This study investigates the mechanism by which maternal protein restriction induces hepatic autophagy-related gene expression in the offspring of rats. Pregnant Sprague-Dawley rats were fed either a control diet (C, 18 % energy from protein) or a low-protein diet (LP, 8·5 % energy from protein) during gestation, followed by the control diet during lactation and post-weaning. Liver tissue was collected from the offspring at postnatal day 38 and divided into four groups according to sex and maternal diet (F-C, F-LP, M-C and M-LP) for further analysis. Autophagy-related mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. In addition, chromatin immunoprecipitation (ChIP) was performed to investigate the interactions between transcription factors and autophagy-related genes. Protein levels of p- eukaryotic translation initiation factor 2a and activating transcription factor 4 (ATF4) were increased only in the female offspring born to dams fed the LP diet. Correlatively, the mRNA expression of hepatic autophagy-related genes including was significantly greater in the F-LP group than in the F-C group. Furthermore, ChIP results showed greater ATF4 and C/EBP homology protein (CHOP) binding at the regions of a set of autophagy-related genes in the F-LP group than in the F-C group. Our data demonstrated that a maternal LP diet transcriptionally programmed hepatic autophagy-related gene expression only in female rat offspring. This transcriptional programme involved the activation of the eIF2/ATF4 pathway and intricate regulation by transcription factors ATF4 and CHOP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9346618 | PMC |
http://dx.doi.org/10.1017/S0007114521003639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!