Background: Myxobacteria harbor numerous biosynthetic gene clusters that can produce a diverse range of secondary metabolites. Minicystis rosea DSM 24000 is a soil-dwelling myxobacterium belonging to the suborderSorangiineae and family Polyangiaceae and is known to produce various secondary metabolites as well as polyunsaturated fatty acids (PUFAs). Here, we use whole-genome sequencing to explore the diversity of biosynthetic gene clusters in M. rosea.
Results: Using PacBio sequencing technology, we assembled the 16.04 Mbp complete genome of M. rosea DSM 24000, the largest bacterial genome sequenced to date. About 44% of its coding potential represents paralogous genes predominantly associated with signal transduction, transcriptional regulation, and protein folding. These genes are involved in various essential functions such as cellular organization, diverse niche adaptation, and bacterial cooperation, and enable social behavior like gliding motility, sporulation, and predation, typical of myxobacteria. A profusion of eukaryotic-like kinases (353) and an elevated ratio of phosphatases (8.2/1) in M. rosea as compared to other myxobacteria suggest gene duplication as one of the primary modes of genome expansion. About 7.7% of the genes are involved in the biosynthesis of a diverse array of secondary metabolites such as polyketides, terpenes, and bacteriocins. Phylogeny of the genes involved in PUFA biosynthesis (pfa) together with the conserved synteny of the complete pfa gene cluster suggests acquisition via horizontal gene transfer from Actinobacteria.
Conclusion: Overall, this study describes the complete genome sequence of M. rosea, comparative genomic analysis to explore the putative reasons for its large genome size, and explores the secondary metabolite potential, including the biosynthesis of polyunsaturated fatty acids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8436480 | PMC |
http://dx.doi.org/10.1186/s12864-021-07955-x | DOI Listing |
Nat Commun
December 2024
Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.
View Article and Find Full Text PDFAm J Ophthalmol Case Rep
December 2024
Genomic Laboratory, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
Purpose: To report the posterior segment findings in a case with a biallelic frameshift pathogenic variant at chromosome 10 c.616del exon7 p.(His206Thrfs∗61).
View Article and Find Full Text PDFFront Bioinform
December 2024
Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States.
Primates, consisting of apes, monkeys, tarsiers, and lemurs, are among the most charismatic and well-studied animals on Earth, yet there is no taxonomically complete molecular timetree for the group. Combining the latest large-scale genomic primate phylogeny of 205 recognized species with the 400-species literature consensus tree available from TimeTree.org yields a phylogeny of just 405 primates, with 50 species still missing despite having molecular sequence data in the NCBI GenBank.
View Article and Find Full Text PDFFront Microbiol
December 2024
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Hepatitis Research Center, Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are known as the most common blood-borne viral infections worldwide. Individuals referring to drop-in centers (DICs) are considered high-risk people exposed to infection with blood-borne viruses. The purpose of this study was to investigate the prevalence of HIV, HBV, and HCV infections among women referred to DICs in Lorestan Province, western Iran.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!