Introduction: Modified ultrafiltration (MUF) is employed at the termination of cardiopulmonary bypass (CPB) in pediatric and neonatal patients undergoing congenital heart surgery to reduce the accumulation of total body water thus increasing the concentration of red blood cells and the other formed elements in the circulation. Modified ultrafiltration has been reported to remove circulating pro-inflammatory mediators that result in systemic inflammatory response syndrome (SIRS) postoperatively.
Methods: Four hundred patients undergoing cardiac surgery requiring cardiopulmonary bypass and weighing less than or equal to 12 kg were retrospectively evaluated for the effectiveness of MUF. After the termination of CPB, blood was withdrawn through the aortic cannula and passed through a hemoconcentrator attached to the blood cardioplegia set and returned to the patient through the venous cannula. The entire CPB circuit volume in addition to the patient's circulating blood volume were concentrated until the hematocrit value displayed on the CDI cuvette within the MUF circuit reached 45% or there was no more volume to safely remove. At the same time a full unit of FFP can be infused as water is being removed, thus maintaining euvolemia.
Results: MUF was performed in all 400 patients with no MUF-related complications. Following the conclusion of MUF, anecdotal observations included improved surgical hemostasis, improved hemodynamic parameters, decreased transfusion requirements, and decreased ventilator times.
Conclusions: Complete MUF enables the clinician to safely raise the post-CPB hematocrit to at least 40% while potentially removing mediators that could result in SIRS. In addition a full unit of FFP can be administered while maintaining euvolemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/02676591211043697 | DOI Listing |
Heliyon
January 2025
Department of Applied Chemistry, Faculty of Chemistry, Razi University, 67144-14971, Kermanshah, Iran.
Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM).
View Article and Find Full Text PDFWater Res
January 2025
China Electronics System Engineering No.2 Construction Co., Ltd., Wuxi 214115, PR China.
Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain.
Nowadays, there is a growing interest in membrane modification processes to improve their characteristics and the effectiveness of their treatments and reduce the possible fouling. In this sense, in this work, a modification of an ultrafiltration membrane with three different materials has been carried out: reduced graphene oxide (rGO), chitosan and MgCl. For both the native and the modified membranes, a study has been carried out to remove the emerging contaminant sulfamethoxazole (SMX).
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia.
J Cardiothorac Vasc Anesth
December 2024
Division of Cardiothoracic Anesthesiology, Duke University Medical Center, Durham, NC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!