Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different cellular and molecular changes underlie the pathogenesis of Alzheimer's disease (AD). Among these, neuron-specific dysregulation is a necessary event for accumulation of classic pathologies including amyloid plaques. Here, we show that AD-associated pathophysiology including neuronal cell death, inflammatory signaling, and endolysosomal dysfunction is spatially colocalized to amyloid plaques in regions with abnormal microRNA-425 (miR-425) levels and this change leads to focal brain microenvironment heterogeneity, that is, an amyloid plaque-associated microenvironment (APAM). APAM consists of multiple specific neurodegenerative signature pathologies associated with senile plaques that contribute to the heterogeneity and complexity of AD. Remarkably, miR-425, a neuronal-specific regulator decreased in AD brain, maintains a normal spatial transcriptome within brain neurons. We tested the hypothesis that miR-425 loss correlates with enhanced levels of mRNA targets downstream, supporting APAM and AD progression. A miR-425-deficient mouse model has enhanced APP amyloidogenic processing, neuroinflammation, neuron loss, and cognitive impairment. In the APP/PS1 mouse model, intervening with miR-425 supplementation ameliorated APAM changes and memory deficits. This study reveals a novel mechanism of dysregulation of spatial transcriptomic changes in AD brain, identifying a probable neuronal-specific microRNA regulator capable of staving off amyloid pathogenesis. Moreover, our findings provide new insights for developing AD treatment strategies with miRNA oligonucleotide(s).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520725 | PMC |
http://dx.doi.org/10.1111/acel.13454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!