N-acetylglutamate synthase deficiency is an autosomal recessive urea cycle disorder caused either by decreased expression of the NAGS gene or defective NAGS enzyme resulting in decreased production of N-acetylglutamate (NAG), an allosteric activator of carbamylphosphate synthetase 1 (CPS1). NAGSD is the only urea cycle disorder that can be effectively treated with a single drug, N-carbamylglutamate (NCG), a stable NAG analog, which activates CPS1 to restore ureagenesis. We describe three patients with NAGSD due to four novel noncoding sequence variants in the NAGS regulatory regions. All three patients had hyperammonemia that resolved upon treatment with NCG. Sequence variants NM_153006.2:c.427-222G>A and NM_153006.2:c.427-218A>C reside in the 547 bp-long first intron of NAGS and define a novel NAGS regulatory element that binds retinoic X receptor α. Sequence variants NC_000017.10:g.42078967A>T (NM_153006.2:c.-3065A>T) and NC_000017.10:g.42078934C>T (NM_153006.2:c.-3098C>T) reside in the NAGS enhancer, within known HNF1 and predicted glucocorticoid receptor binding sites, respectively. Reporter gene assays in HepG2 and HuH-7 cells demonstrated that all four substitutions could result in reduced expression of NAGS. These findings show that analyzing noncoding regions of NAGS and other urea cycle genes can reveal molecular causes of disease and identify novel regulators of ureagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604755PMC
http://dx.doi.org/10.1002/humu.24281DOI Listing

Publication Analysis

Top Keywords

sequence variants
16
urea cycle
12
noncoding sequence
8
define novel
8
regulatory element
8
n-acetylglutamate synthase
8
cycle disorder
8
nags
8
expression nags
8
three patients
8

Similar Publications

BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Bovine spastic syndrome (SS) is a progressive, adult-onset neuromuscular disorder (NMD). SS is inherited but the mode of inheritance is unclear. The aim of this study was to characterize the phenotype and to identify a possible genetic cause of SS by whole-genome sequencing (WGS) and focusing on protein-changing variants.

View Article and Find Full Text PDF

Background: Mutations in gamma-secretase complex (GSC) genes are associated with hidradenitis suppurativa (HS), and toll-like receptor (TLR) 2 is elevated in HS lesions. However, it remains unclear whether TLR2 is upregulated in the skin lesions of patients with HS with GSC gene variants, and the role of its upregulation in the pathogenesis of this disease are unknown.

Objective: To investigate the role of TLR2 upregulation in NCSTN and PSENEN knockdown keratinocytes.

View Article and Find Full Text PDF

Loss-of-function SLC25A20 mutation causes carnitine-acylcarnitine translocase deficiency by reducing SLC25A20 protein stability.

Gene

December 2024

Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!