Single-layer graphene containing molecular-sized in-plane pores is regarded as a promising membrane material for high-performance gas separations due to its atomic thickness and low gas transport resistance. However, typical etching-based pore generation methods cannot decouple pore nucleation and pore growth, resulting in a trade-off between high areal pore density and high selectivity. In contrast, intrinsic pores in graphene formed during chemical vapor deposition are not created by etching. Therefore, intrinsically porous graphene can exhibit high pore density while maintaining its gas selectivity. In this work, the density of intrinsic graphene pores is systematically controlled for the first time, while appropriate pore sizes for gas sieving are precisely maintained. As a result, single-layer graphene membranes with the highest H /CH separation performances recorded to date (H permeance > 4000 GPU and H /CH selectivity > 2000) are fabricated by manipulating growth temperature, precursor concentration, and non-covalent decoration of the graphene surface. Moreover, it is identified that nanoscale molecular fouling of the graphene surface during gas separation where graphene pores are partially blocked by hydrocarbon contaminants under experimental conditions, controls both selectivity and temperature dependent permeance. Overall, the direct synthesis of porous single-layer graphene exploits its tremendous potential as high-performance gas-sieving membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202104308 | DOI Listing |
Nat Commun
January 2025
Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, PR China.
To enable open environment application of artificial photosynthesis, the direct utilization of environmental CO via an oxygen-tolerant reductive procedure is necessary. Herein, we introduce an in situ growth strategy for fabricating two-dimensional heterojunctions between indium porphyrin metal-organic framework (In-MOF) and single-layer graphene oxide (GO). Upon illumination, the In-MOF/GO heterostructure facilitates a tandem CO capture and photocatalytic reduction on its hydroxylated In-node, prioritizing the reduction of dilute CO even in the presence of air-level O.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
The transfer of large-area, continuous, chemical vapor deposition (CVD)-grown graphene without introducing defects remains a challenge for fabricating graphene-based electronics. Polymer thin films are commonly used as supports for transferring graphene, but they typically require thermal annealing before transfer. However, little work has been done to thoroughly investigate how thermal annealing affects the polymer/graphene thin film when directly annealed on the growth substrate.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
With the development of the nuclear industry, the direct discharge of uranium-containing wastewater has become increasingly harmful to the environment. A novel graphene oxide-supported and phosphoric-crosslinked chitosan gel bead (C-PGCB) with excellent uranium uptake capability was successfully fabricated to treat uranium-containing wastewater. The experimental results showed that the introduction of PO and CO bonds through phosphoric acid crosslinking could greatly improve the capturing ability of chitosan-based materials, which could reach 97.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!