Sorting nexin 6 interacts with Cullin3 and regulates programmed death ligand 1 expression.

FEBS Lett

Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.

Published: October 2021

Programmed death ligand 1 (PD-L1) is critical for the ability of cancer cells to evade attacks by the host immune system. However, the molecular mechanisms controlling PD-L1 expression have not been fully understood. Here, we demonstrate that sorting nexin 6 (SNX6) is a novel regulator of PD-L1 expression. Knockdown of SNX6 in cancer cells significantly decreases PD-L1 protein levels. In contrast, loss of SNX6 does not reduce PD-L1 mRNA levels. Instead, SNX6 interacts with Cullin3, an E3 ubiquitin ligase responsible for PD-L1 ubiquitination and subsequent degradation. By binding with Cullin3, SNX6 decreases the interaction between the adaptor protein speckle-type POZ protein and Cullin3, which in turn downregulates Cullin3-mediated PD-L1 ubiquitination. This research reveals a novel molecular nexus in modulating PD-L1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545913PMC
http://dx.doi.org/10.1002/1873-3468.14191DOI Listing

Publication Analysis

Top Keywords

sorting nexin
8
interacts cullin3
8
programmed death
8
death ligand
8
pd-l1
8
cancer cells
8
pd-l1 expression
8
pd-l1 ubiquitination
8
snx6
5
nexin interacts
4

Similar Publications

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Background: SNX19 is a key player in endolysosomal and autophagy pathways, which have been extensively reported in neuronal dysfunction and neurodegenerative diseases. Although genetic and cellular evidence suggests SNX19 contributes to neuropathology, the underlying mechanisms remain unknown. Here, we propose to study the mechanism in aging postmortem brain tissue at single cell level and model SNX19 in human induced pluripotent stem cell (hiPSCs) derived brain organoids.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Cleveland Institute for Computational Biology, Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.

Background: While there are numerous genome-wide association studies (GWAS) assessing the genetic basis of Alzheimer's disease (AD), there are far fewer studies examining genetic factors for cognitive and global resilience to AD neuropathology. By focusing on a gene-level rather than a single-variant basis, transcriptome-wide association studies (TWAS) have increased statistical power relative to GWAS and can assess the role of genetically regulated gene expression in AD resilience. We leveraged the largest available cis-eQTL meta-analysis summary statistics from brain tissue (MetaBrain Brain-Cortex; N = 2,547) and whole blood (eQTLGen; N = 31,684) and applied them to the largest cognitive and global resilience to AD neuropathology summary statistics from Dumitrescu et al.

View Article and Find Full Text PDF

Deciphering glioblastoma pathogenesis: Insights from mitophagy dysregulation and SNX7 as a therapeutic target.

Brain Res Bull

December 2024

Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China. Electronic address:

Background: Glioblastoma is a highly aggressive and invasive brain tumor with an extremely poor prognosis. The aims of the present study are to investigate the pathogenesis of glioblastoma and identify potential therapeutic targets.

Methods: We performed a systematic analysis of gene expression data from multiple datasets, including GEO and TCGA, to identify hub genes and pathways associated with glioblastoma progression.

View Article and Find Full Text PDF

The Plant Retromer Components SNXs Bind to ATG8 and CLASP to Mediate Autophagosome Movement along Microtubules.

Mol Plant

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. Electronic address:

In eukaryotic cells, autophagosomes are double-membrane vesicles that are highly mobile and traffic along cytoskeletal tracks. While core autophagy-related proteins (ATGs) and other regulators involved in autophagosome biogenesis in plants have been extensively studied, the specific components regulating plant autophagosome motility remain elusive. In this study, using TurboID-based proximity labelling, we identify the retromer subcomplex comprising sorting nexin 1 (SNX1), SNX2a, and SNX2b as interacting partners of ATG8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!