Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, along with co-evolutionary relationships, deep learning approaches have been introduced in PSP that lead to significant progress. In this paper a novel methodology using deep ResNet architecture for predicting inter-residue distance and dihedral angles is proposed, that aims to generate 125 homologous sequences in an average from a set of customized sequence database. These sequences are used to generate input features. As an outcome of neural networks, a pool of structures is generated from which the lowest potential structure is chosen as the final predicted 3-D protein structure. The proposed method is trained using 6521 protein sequences extracted from Protein Data Bank (PDB). For testing 48 protein sequences whose residue length is less than 400 residues are chosen from the 13th Critical Assessment of protein Structure Prediction (CASP 13) dataset are used. The model is compared with Alphafold, Zhang, and RaptorX. The template modeling (TM) score is used to evaluate the accuracy of the estimated structure. The proposed method produces better performances for 52% of the target sequences while that of Alphafold, Zhang, RaptorX were 10%, 22.9%, and 6% respectively. Additionally, for 37.5% target sequences, the proposed method was able to achieve accuracy greater than or equal to 0.80. The TM score obtained for the sequences under consideration were 0.69, 0.67, 0.65, and 0.58 respectively for the proposed method, Alphafold, Zhang, and RaptorX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-021-10016-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!