Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cadmium (Cd) has been reported to induce kidney damage by triggering oxidative stress and inflammation. The NLR family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated a role in the pathogenesis of inflammation. However, the connection between Cd and NLRP3 inflammasome in the development of renal inflammation remains unknown. In this study, in vitro experiments based on the telomerase-immortalized human renal proximal-tubule epithelial cell line (RPTEC/TERT1) were carried out. Results revealed that CdCl (2-8 μM) increased ROS production and activated NLRP3, thereby enhancing secretion of IL-1β and IL-18 (P < 0.05). Knock-down of NLRP3 rescued the RPTEC/TERT1 cells from Cd-induced inflammatory damage. Cd activated the MAPK/NF-κB signaling pathway in RPTEC/TERT1 cells (P < 0.05). In addition, treatment with N-acetylcysteine (NAC) improved inflammation and blocked the upregulation of the MAPK/NF-κB signaling pathway. Pre-treatment with MAPK and NF-κB inhibitors also suppressed NLRP3 inflammasome activation (P < 0.05). Moreover, CdCl (25-00 mg/L) stimulated the MAPK/NF-κB signaling pathway, activated the NLRP3 inflammasome, and increased inflammatory response (P < 0.05) leading to renal injury in rats. Exposure to cadmium elevated serum levels of NLRP3 and IL-1β in populations (P < 0.05). Further analysis found that serum NLRP3 and IL-1β levels were positively correlated with urine cadmium (UCd) and urine N-acetyl-β-D-glucosaminidase (UNAG). Overall, Cd induced renal inflammation through the ROS/MAPK/NF-κB signaling pathway by activating the NLRP3 inflammasome. Our research thus provides new insights into the molecular mechanism that NLRP3 contributes to Cd-induced kidney damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-021-03157-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!