Differential effects of nanosecond pulsed electric fields on cells representing progressive ovarian cancer.

Bioelectrochemistry

Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:

Published: December 2021

Nanosecond pulsed electric fields (nsPEFs) may induce differential effects on tumor cells from different disease stages and could be suitable for treating tumors by preferentially targeting the late-stage/highly aggressive tumor cells. In this study, we investigated the nsPEF responses of mouse ovarian surface epithelial (MOSE) cells representing progressive ovarian cancer from benign to malignant stages and highly aggressive tumor-initiating-like cells. We established the cell-seeded 3D collagen scaffolds cultured with or without Nocodazole (eliminating the influence of cell proliferation on ablation outcome) to observe the ablation effects at 3 h and 24 h after treatment and compared the corresponding thresholds obtained by numerically calculated electric field distribution. The results showed that nsPEFs induced larger ablation areas with lower thresholds as the cell progress from benign, malignant to a highly aggressive phenotype. This differential effect was not affected by the different doubling times of the cells, as apparent by similar ablation induction after a synergistic treatment of nsPEFs and Nocodazole. The result suggests that nsPEFs could induce preferential ablation effects on highly aggressive and malignant ovarian cancer cells than their benign counterparts. This study provides an experimental basis for the research on killing malignant tumor cells via electrical treatments and may have clinical implications for treating tumors and preventing tumor recurrence after treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.107942DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
12
tumor cells
12
highly aggressive
12
differential effects
8
nanosecond pulsed
8
pulsed electric
8
electric fields
8
cells
8
cells representing
8
representing progressive
8

Similar Publications

Background: LIGHT (oLaparib In HRD-Grouped Tumor types; NCT02983799) prospectively evaluated olaparib treatment in patients with platinum-sensitive relapsed ovarian cancer (PSROC) assigned to cohorts by known BRCA mutation (BRCAm) and homologous recombination deficiency (HRD) status: germline BRCAm (gBRCAm), somatic BRCAm (sBRCAm), HRD-positive non-BRCAm, and HRD-negative. At the primary analysis, olaparib treatment demonstrated activity across all cohorts, with greatest efficacy in terms of objective response rate and progression-free survival observed in the g/sBRCAm cohorts. The authors report final overall survival (OS).

View Article and Find Full Text PDF

Fertility preservation in female cancer patients: Surgical procedures.

Int J Gynaecol Obstet

January 2025

Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.

The surgical management of cancer patients wishing fertility preservation is multidisciplinary, involving surgeon, anesthetist, hematologist, and nursing and laboratory staff. Many oncology patients have a multitude of medical or surgical conditions that require careful planning of all therapy including surgical removal of reproductive material, either oocytes or ovarian tissue. The significant risks related to either transvaginal or abdominal surgery should be discussed and documented and the final decision to proceed must be balanced against the risks, including death.

View Article and Find Full Text PDF

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!