Fish larvae play an important structuring role for their prey and show ontogenetic shifts in diet. Changes in diet differ between species and habitats and may also be affected by turbidity (eutrophication). We investigated the diet (stomach content) and the food selection (ratio of ingested prey and prey availability) of roach and perch larvae in a clear lake and of roach, perch and pikeperch larvae in a turbid lake multiple times during spring to autumn. The diet of the fish larvae changed with size, and for roach and perch larvae between the lakes. Coexisting species of fish larvae had different diets in the two lakes, pointing to resource partitioning; yet, in the clear lake, medium-sized larvae had a high diet overlap, suggesting a competitive relationship at this developmental stage. In the clear lake, roach larvae showed diel differentiation in diet, while perch demonstrated diet shifts between habitats, which probably aided in reducing competition and also evidenced an effect of light on the larval prey capture and/or predator-fish larvae interactions. In the turbid lake, roach and perch larvae did not reveal differences in diet between habitats or time of the day, owing to homogeneity of food items and poor light conditions. However, the diet of pikeperch larvae differed between day and night following daily variations in the abundance of its preferred prey. The roach larvae were highly selective for Bosmina, Daphnia and benthic cladocerans, perch larvae generally consumed what was available, while pikeperch primarily preyed on cyclopoid copepodites. We conclude that turbidity acted as a cover for fish larvae in the turbid lake. Under eutrophication-induced turbidity scenarios the effects of fish larvae on their prey are stronger (i.e., high selectivity for several resources) than that of larvae in clear waters, creating a negative feedback on the path to restore water clarity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150050 | DOI Listing |
Bio Protoc
December 2024
Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.
Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.
View Article and Find Full Text PDFPak J Biol Sci
November 2024
<b>Background and Objective:</b> Betta fish is one of the most popular ornamental fish because of their attractive body shape, especially for males. The fish development usually results in a similar number of males and females or an even higher number of females. This study aimed to determine the effect of various concentrations of honey and the age of larvae on the sex ratio of Betta fish.
View Article and Find Full Text PDFMetabolites
December 2024
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!