Adaption to hydrogen sulfide-rich environments: Strategies for active detoxification in deep-sea symbiotic mussels, Gigantidas platifrons.

Sci Total Environ

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China. Electronic address:

Published: January 2022

The deep-sea mussel Gigantidas platifrons is a representative species that relies on nutrition provided by chemoautotrophic endosymbiotic bacteria to survive in both hydrothermal vent and methane seep environments. However, vent and seep habitats have distinct geochemical features, with vents being more harsh than seeps because of abundant toxic chemical substances, particularly hydrogen sulfide (HS). Until now, the adaptive strategies of G. platifrons in a heterogeneous environment and their sulfide detoxification mechanisms are still unclear. Herein, we conducted 16S rDNA sequencing and metatranscriptome sequencing of G. platifrons collected from a methane seep at Formosa Ridge in the South China Sea and a hydrothermal vent at Iheya North Knoll in the Mid-Okinawa Trough to provide a model for understanding environmental adaption and sulfide detoxification mechanisms, and a three-day laboratory controlled NaS stress experiment to test the transcriptomic responses under sulfide stress. The results revealed the active detoxification of sulfide in G. platifrons gills. First, epibiotic Campylobacterota bacteria were more abundant in vent mussels and contributed to environmental adaptation by active oxidation of extracellular HS. Notably, a key sulfide-oxidizing gene, sulfide:quinone oxidoreductase (sqr), derived from the methanotrophic endosymbiont, was significantly upregulated in vent mussels, indicating the oxidization of intracellular sulfide by the endosymbiont. In addition, transcriptomic comparison further suggested that genes involved in oxidative phosphorylation and mitochondrial sulfide oxidization pathway played important roles in the sulfide tolerance of the host mussels. Moreover, transcriptomic analysis of NaS stressed mussels confirmed the upregulation of oxidative phosphorylation and sulfide oxidization genes in response to sulfide exposure. Overall, this study provided a systematic transcriptional analysis of both the active bacterial community members and the host mussels, suggesting that the epibionts, endosymbionts, and mussel host collaborated on sulfide detoxification from extracellular to intracellular space to adapt to harsh HS-rich environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150054DOI Listing

Publication Analysis

Top Keywords

sulfide detoxification
12
sulfide
11
active detoxification
8
gigantidas platifrons
8
hydrothermal vent
8
methane seep
8
detoxification mechanisms
8
vent mussels
8
oxidative phosphorylation
8
sulfide oxidization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!