Full-length dystrophin restoration via targeted exon integration by AAV-CRISPR in a humanized mouse model of Duchenne muscular dystrophy.

Mol Ther

Department of Biomedical Engineering, Room 1427 FCIEMAS, 101 Science Drive, Box 90281, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA; Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Regeneration Next Initiative, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA. Electronic address:

Published: November 2021

Targeted gene-editing strategies have emerged as promising therapeutic approaches for the permanent treatment of inherited genetic diseases. However, precise gene correction and insertion approaches using homology-directed repair are still limited by low efficiencies. Consequently, many gene-editing strategies have focused on removal or disruption, rather than repair, of genomic DNA. In contrast, homology-independent targeted integration (HITI) has been reported to effectively insert DNA sequences at targeted genomic loci. This approach could be particularly useful for restoring full-length sequences of genes affected by a spectrum of mutations that are also too large to deliver by conventional adeno-associated virus (AAV) vectors. Here, we utilize an AAV-based, HITI-mediated approach for correction of full-length dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy (DMD). We co-deliver CRISPR-Cas9 and a donor DNA sequence to insert the missing human exon 52 into its corresponding position within the DMD gene and achieve full-length dystrophin correction in skeletal and cardiac muscle. Additionally, as a proof-of-concept strategy to correct genetic mutations characterized by diverse patient mutations, we deliver a superexon donor encoding the last 28 exons of the DMD gene as a therapeutic strategy to restore full-length dystrophin in >20% of the DMD patient population. This work highlights the potential of HITI-mediated gene correction for diverse DMD mutations and advances genome editing toward realizing the promise of full-length gene restoration to treat genetic disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571168PMC
http://dx.doi.org/10.1016/j.ymthe.2021.09.003DOI Listing

Publication Analysis

Top Keywords

full-length dystrophin
16
humanized mouse
8
mouse model
8
model duchenne
8
duchenne muscular
8
muscular dystrophy
8
gene-editing strategies
8
gene correction
8
dmd gene
8
full-length
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!