We used computational methods to analyze the mechanism of actin filament nucleation. We assumed a pathway where monomers form dimers, trimers, and tetramers that then elongate to form filaments but also considered other pathways. We aimed to identify the rate constants for these reactions that best fit experimental measurements of polymerization time courses. The analysis showed that the formation of dimers and trimers is unfavorable because the association reactions are orders of magnitude slower than estimated in previous work rather than because of rapid dissociation of dimers and trimers. The 95% confidence intervals calculated for the four rate constants spanned no more than one order of magnitude. Slow nucleation reactions are consistent with published high-resolution structures of actin filaments and molecular dynamics simulations of filament ends. One explanation for slow dimer formation, which we support with computational analysis, is that actin monomers are in a conformational equilibrium with a dominant conformation that cannot participate in the nucleation steps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553669 | PMC |
http://dx.doi.org/10.1016/j.bpj.2021.09.006 | DOI Listing |
Front Immunol
January 2025
Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a single active dopant on the surface of a metal host, quantified by the surface segregation and aggregation energy. Previous studies have investigated the surface segregation of non-ligated and ligated SAAs to reveal the driving forces underlying such phenomena.
View Article and Find Full Text PDFJ Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Laboratory of Bioactives (LABBIO), Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil.
Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MS in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity ( > 0.9, < 0.
View Article and Find Full Text PDFNano Lett
January 2025
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098 Kiel, Germany.
The mechanical coupling between molecules represents a promising route for the development of molecular machines. Constructing molecular gears requires easily rotatable and mutually interlocked pinions. Using scanning tunneling microscopy (STM), it is demonstrated that aluminum phthalocyanine (AlPc) molecules on Pb(100) exhibit these properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!