Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.112040DOI Listing

Publication Analysis

Top Keywords

endocrine disrupting
8
disrupting chemicals
8
gonad development
8
fish mammals
8
reproductive health
8
knowledge mechanisms
8
edcs
6
development
5
effects endocrine
4
chemicals gonad
4

Similar Publications

Nanoplastics (NPs) are an emerging class of pollutants. They can act as a"Trojan horse" to change the bioavailability and toxicity of heavy metals in the environment. However, research on the combined toxicity of heavy metals and NPs is scarce, especially during the critical developmental period of adolescence.

View Article and Find Full Text PDF

The interplay of factors in metabolic syndrome: understanding its roots and complexity.

Mol Med

December 2024

Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Metabolic syndrome (MetS) is an indicator and diverse endocrine syndrome that combines different metabolic defects with clinical, physiological, biochemical, and metabolic factors. Obesity, visceral adiposity and abdominal obesity, dyslipidemia, insulin resistance (IR), elevated blood pressure, endothelial dysfunction, and acute or chronic inflammation are the risk factors associated with MetS. Abdominal obesity, a hallmark of MetS, highlights dysfunctional fat tissue and increased risk for cardiovascular disease and diabetes.

View Article and Find Full Text PDF

Diethylstilbestrol (DES) is an estrogenic endocrine disrupting chemical (EDC) that was prescribed to millions of pregnant women worldwide, leading to increased rates of infertility in the exposed offspring. We have previously demonstrated that this reduced fertility persists for multiple generations in the mouse. However, how altered ovarian function contributes to this infertility is unknown.

View Article and Find Full Text PDF

One in five couples who wish to conceive is infertile, and half of these couples have male infertility. However, the causes of male infertility are still largely unknown. Creatine is stored in the body as an energy buffer, and the testes are its second-largest reservoir after muscles.

View Article and Find Full Text PDF

Background: Congenital heart diseases are among the most common birth defects, significantly impacting infant health. Recent evidence suggests that exposure to endocrine-disrupting chemicals may contribute to the incidence of congenital heart diseases. This study systematically reviews and analyzes the association between maternal endocrine-disrupting chemicals exposure and congenital heart diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!