Pb(II) is a heavy metal that is a prominent contaminant in water contamination. Among the different pollution removal strategies, adsorption was determined to be the most effective. The adsorbent and its type determine the adsorption process's efficiency. As part of this effort, a magnetic reduced graphene oxide-based inverse spinel nickel ferrite (rGNF) nanocomposite for Pb(II) removal is synthesized, and the optimal values of the independent process variables (like initial concentration, pH, residence time, temperature, and adsorbent dosage) to achieve maximum removal efficiency are investigated using conventional response surface methodology (RSM) and artificial neural networks (ANN). The results indicate that the initial concentration, adsorbent dose, residence time, pH, and process temperature are set to 15 mg/L, 0.55 g/L, 100 min, 5, and 30 °C, respectively, the maximum removal efficiency (99.8%) can be obtained. Using the interactive effects of process variables findings, the adsorption surface mechanism was examined in relation to process factors. A data-driven quadratic equation is derived based on the ANOVA, and its predictions are compared with ANN predictions to evaluate the predictive capabilities of both approaches. The R values of RSM and ANN predictions are 0.979 and 0.991 respectively and confirm the superiority of the ANN approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2021.112029 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.
Industrial wastewater containing heavy metal ions presents serious economic risk to the environment. In this study, a novel compound of aminated cellulose with jeffamine EDR148 was prepared to improve cellulose's adsorptive behavior towards metal ions. This study undertook a straightforward and efficient cellulose modification through homogeneous chlorination in N,N'-butylmethylimidazolium chloride to produce 6-deoxychlorocellulose (Cell-Cl), followed by a reaction with jeffamine EDR148 and ultimately resulting in the formation of aminated cellulose (Cell-Jef148).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai 059-1275, Hokkaido, Japan.
Nano-fibrillated bacterial cellulose (NFBC) has very long fibers (>17 μm) with diameters of approximately 20 nm. Hence, they have a very high aspect ratio and surface area. The high specific surface area of NFBC can potentially be utilized as an adsorbent.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa.
Heavy metal ions are acknowledged to impact the environment and human health adversely. CNCs are effective materials for removing heavy metal ions in industrial applications and process innovations since they can be used in static and dynamic adsorption processes. Cost-effective, uncomplicated water treatment technologies must be developed using biodegradable polymers, namely, modified cellulose nanocrystals.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!