Background And Study Aims: Helicobacter pylori (H. pylori) is well known as the main cause of gastritis, gastroduodenal ulcers, gastric mucosa-associated lymphoid tissue lymphoma, and gastric cancer. Approximately 50% of the world's population is infected with H. pylori. In Egypt, a high prevalence of H. pylori infections has been reported in the general population. This study aimed to prepare amoxicillin-loaded poly (ɛ-caprolactone) nanocapsules to increase its gastric stability and therapeutic activity of the molecule against H. pylori.

Materials And Methods: In this study, we used the water-oil-water double-emulsion technique to prepare spherical-shaped polymeric nanocapsules containing amoxicillin trihydrate as the core substance and biodegradable biocompatible poly (ɛ-caprolactone) as the shell material.

Results: The encapsulation efficiency obtained was 97.2% ± 0.8%. The hydrodynamic diameter of the prepared nanocapsules was 287 ± 8 nm with a positive zeta potential. In vitro release studies indicated that the polymeric nanocapsules showed decreased release percentages at pH 1.2, simulating the gastric fluid while relatively increased release at pH 7.0 where the H. pylori reside. The in vitro antibacterial assay showed better efficiency for amoxicillin nanocapsules than for the uncapsulated free amoxicillin, no efficiency was detected for the PCL nanocapsules indicated that the antibacterial due to amoxicillin alone. Cytotoxicity studies demonstrated less cytotoxicity for the polymeric nanocapsules in comparison with amoxicillin.

Conclusions: In conclusion, we have demonstrated that biodegradable polymeric nanocapsules are useful drug delivery agents for increasing the gastric stability and therapeutic activity of amoxicillin trihydrate against H. pylori.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajg.2021.06.002DOI Listing

Publication Analysis

Top Keywords

polymeric nanocapsules
20
nanocapsules
9
nanocapsules drug
8
drug delivery
8
helicobacter pylori
8
poly ɛ-caprolactone
8
gastric stability
8
stability therapeutic
8
therapeutic activity
8
amoxicillin trihydrate
8

Similar Publications

Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.

View Article and Find Full Text PDF

Biomaterials for Corneal Regeneration.

Adv Sci (Weinh)

December 2024

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion.

View Article and Find Full Text PDF

Developing and creating novel antibiotics is one of the most important targets in treating infectious diseases. Novel coumarins were synthesized and characterized using different spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear magnetic resonanceH and C and mass spectroscopy (MS). All of the synthesized compounds have been tested for activity and sensitivity against the microbial strains of B.

View Article and Find Full Text PDF

Supramolecular dextran/polyamine phosphate nanocapsules with smart responsiveness for encapsulation of therapeutics.

J Colloid Interface Sci

December 2024

Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy. Electronic address:

The polyallylamine hydrochloride (PAH) polymer is here functionalized with branched and biocompatible polysaccharide dextran (DEX) molecules. Covalent conjugation of DEX to PAH has been achieved through a straightforward reductive amination approach, allowing for a controlled number of DEX chains per PAH polymer (PAH:DEX, n = 0.1, 0.

View Article and Find Full Text PDF

This study was executed to mitigate imiquimod (IMQ)-side effects and promote its anticancer potential against skin cancer via encapsulation in hyaluronic acid-coated lipid nanocapsules (HA-LNCs) for targeted topical delivery. The LNCs were prepared using the phase inversion technique. Optimized LNCs formulation was gained following 2 factorial design experiment to adjust the IMQ and CTAB concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!