3-T MRI of the Ankle Tendons and Ligaments.

Clin Sports Med

Division of Musculoskeletal Imaging and Intervention, Department of Radiology, University of Washington Medical Center, UW Radiology-Roosevelt Clinic, 4245 Roosevelt Way Northeast, Box 354755, Seattle, WA 98105, USA. Electronic address:

Published: October 2021

Ankle sprain is the most common injury in athletic populations. Ligament and tendon pathologies of the ankle are common, ranging from traumatic injuries to degeneration leading to chronic pain and acquired foot deformities. MRI is the imaging modality of choice to evaluate tendon and ligament pathology of the ankle, specifically derangements of tendons and ligaments. 3-T MRI offers improved imaging characteristics relative to 1.5-T MRI, allowing for better delineation of anatomic detail and pathology. This article provides a review of the anatomy and common pathologies of the ankle ligaments and tendons using high-resolution 3-T MRI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.csm.2021.05.009DOI Listing

Publication Analysis

Top Keywords

3-t mri
12
tendons ligaments
8
pathologies ankle
8
ankle
5
mri ankle
4
ankle tendons
4
ligaments ankle
4
ankle sprain
4
sprain common
4
common injury
4

Similar Publications

Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types.

View Article and Find Full Text PDF

Left Ventricular Hemodynamic Forces Changes in Fabry Disease: A Cardiac Magnetic Resonance Study.

J Magn Reson Imaging

January 2025

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Hemodynamic force (HDF) from cardiac MRI can indicate subclinical myocardial dysfunction, and help identify early cardiac changes in patients with Fabry disease (FD). The hemodynamic change in FD patients remains unclear.

Purpose: To explore HDF changes in FD and the potential of HDF measurements as diagnostic markers indicating early cardiac changes in FD.

View Article and Find Full Text PDF

Clinical Evaluation of 3D Motion-Correction Via Scout Accelerated Motion Estimation and Reduction Framework Versus Conventional T1-Weighted MRI at 1.5 T in Brain Imaging.

Invest Radiol

January 2025

From the Department of Neuroradiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany (L.S.L., K.H.H., A.K., M.A.B., S.A., A.E.O.); Institute of Medical Biostatistics, Epidemiology, and Informatics, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany (R.H.P.); and Siemens Healthineers AG, Forchheim, Germany (D.P., D.N.S.).

Objectives: The aim of this study was to investigate the occurrence of motion artifacts and image quality of brain magnetic resonance imaging (MRI) T1-weighted imaging applying 3D motion correction via the Scout Accelerated Motion Estimation and Reduction (SAMER) framework compared with conventional T1-weighted imaging at 1.5 T.

Materials And Methods: A preliminary study involving 14 healthy volunteers assessed the impact of the SAMER framework on induced motion during 3 T MRI scans.

View Article and Find Full Text PDF

Background: Splenic stiffness is a potential imaging marker of portal hypertension. Normative spleen stiffness values are needed to define diagnostic thresholds.

Objective: To report stiffness measurements of the spleen in healthy children undergoing liver magnetic resonance (MR) elastography across MRI vendors and field strengths.

View Article and Find Full Text PDF

Comparison of ultrasound to MR and histological methods for liver fat quantification.

Eur J Radiol

January 2025

MR-Unit, Dept. Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic.

Purpose: This prospective pilot study aims to evaluate the capabilities of novel quantitative ultrasound (QUS) methods based on attenuation (Att.PLUS) and sound speed (SSp.PLUS) for detecting liver fat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!