A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ozone as oxidizing agent for the total oxidizable precursor (TOP) assay and as a preceding step for activated carbon treatments concerning per- and polyfluoroalkyl substance removal. | LitMetric

Several thousands of highly persistent per- and polyfluoroalkyl substances (PFAS) exist and it is therefore challenging to analytically determine a larger spectrum of these compounds simultaneously in one sample. It is even more difficult to efficiently remove mobile PFAS in wastewater treatment plants (WWTPs) to protect the receiving waters. The total oxidizable precursor (TOP) assay is an approach that enables the detection of the total PFAS content in a sample via oxidation of precursors, followed by subsequent analysis of the perfluoroalkyl acid (PFAA) concentration before and after oxidative processes. Activated carbon combined with a preceding ozonation step is considered a promising tool for the removal of micropollutants but considering PFAS removal efficiencies in effluents for this process combination more information is required. The focus of the study was to implement and assess the TOP assay with ozone as oxidizing agent to estimate the total PFAS content in a WWTP effluent. Additionally, granular activated carbon (GAC) and powdered activated carbon (PAC) with a preceding ozonation step was tested for the removal efficiencies for 22 PFAS. For the TOP assay the obtained accordance in molarity using spiked tap water as quality control was 95.2% (15 mg O/L) and 99.1% (6 mg O/L). Applying the TOP assay, an estimated total PFAS content of 840 ng/L was determined in the respective effluent, which was 91.1% higher than obtained by target PFAS analysis, implying the presence of unknown precursors not included in common monitoring. While all treatment techniques that included ozone or a preceding ozonation step solely transformed precursors and long-chain perfluoroalkyl acids (PFAA, i.e., >C9) to shorter congeners, PAC was the only tested water treatment application that was able to remove 19.3% of the total PFAS molarity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113692DOI Listing

Publication Analysis

Top Keywords

top assay
20
activated carbon
16
total pfas
16
pfas content
12
preceding ozonation
12
ozonation step
12
pfas
9
ozone oxidizing
8
oxidizing agent
8
total oxidizable
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!