A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of CoO-BiO-Ti catalytic membrane for efficient degradation of organic pollutants in water by peroxymonosulfate activation. | LitMetric

Fabrication of CoO-BiO-Ti catalytic membrane for efficient degradation of organic pollutants in water by peroxymonosulfate activation.

J Colloid Interface Sci

State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.

Published: February 2022

In this study, a functionalized CoO-BiO-Ti catalytic membrane (CBO-Ti-M) was prepared and applied for removing organic pollutants via activating peroxymonosulfate (PMS) in the dead-end filtration mode. Characterizations including scanning electron microcopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the CoO-BiO catalyst was successfully supported on the Ti membrane. The CBO-Ti-M /PMS system could efficiently remove various organic pollutants such as sulfamethoxazole, methyl orange, bisphenol A and methylene blue, achieving removal efficiencies of 98.0%-99.5%. The effects of PMS concentration, flow rate and solution environment on degradation efficiency were investigated in detail. Furthermore, quenching experiments, electron spin resonance (ESR) and in-situ open circuit potential (OCP) tests collectively demonstrated that singlet oxygen as well as the non-radical electron transfer pathway mainly contributed in the reaction mechanism. The synergistic effect of Co and Bi was illustrated according to XPS results, and the possible degradation pathway of MB was proposed based on LC-MS analysis. Reusability test showed that pollutant removal efficiency with the CBO-Ti-M /PMS system remained stable in four runs and limited metal leaching was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.08.086DOI Listing

Publication Analysis

Top Keywords

organic pollutants
12
coo-bio-ti catalytic
8
catalytic membrane
8
membrane cbo-ti-m
8
cbo-ti-m /pms
8
/pms system
8
fabrication coo-bio-ti
4
membrane efficient
4
efficient degradation
4
degradation organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!