Rheological behaviour of attractive emulsions differing in droplet-droplet interaction strength.

J Colloid Interface Sci

TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands. Electronic address:

Published: February 2022

Hypothesis: We hypothesise that interaction strength between oil droplets determine the rheological properties of oil-in-water (O/W) emulsions by simultaneous formation and break-up of bonds between droplets. Using small (SAOS) and large (LAOS) amplitude oscillatory shear measurements, we aim to distinguish different classes of emulsions based on the specific microstructural evolution of the emulsions.

Experiments: Concentrated O/W emulsions differing in droplet-droplet interaction strength were obtained. Different interaction strength was obtained using different types of interactions; (a) electrostatic attraction, (b) salt bridging, or (c) crosslinking.

Findings: In line with our hypothesis, different rheological events in emulsions depend on the droplet-droplet interaction strength. Strong interactions lead to monotonous yielding, and droplets undergo jamming or densification to provide strain hardening and gel-like behaviour. Emulsions with weak interactions exhibit two-step yielding (SAOS) and continuous yielding in LAOS; indicating a soft-glassy material. In emulsions above maximum packing, and with weak interactions the rheology is controlled by cluster/cage breaking, and transient formation of new clusters. For medium-strength interactions, two-step yielding was reduced, and apparent stain-hardening occurred. The probability of two distinct time scales of yielding is hindered by stronger interactions and jamming. Overall, in concentrated emulsions, yielding is determined by network rupture and reformation, cluster rearrangement and -breaking, which in turn is influenced by interaction type and strength. We present a more differentiated categorisation of emulsions based on interaction strength.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.08.124DOI Listing

Publication Analysis

Top Keywords

interaction strength
24
droplet-droplet interaction
12
emulsions
9
emulsions differing
8
differing droplet-droplet
8
o/w emulsions
8
emulsions based
8
weak interactions
8
two-step yielding
8
interaction
7

Similar Publications

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.

View Article and Find Full Text PDF

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

This study aimed to construct oleofilms containing a binary mixture of proteins (soy protein hydrolysate and gelatin) and lipids (olive oil, stearic acid, and lecithin) using various ultrasonic emulsification processes. Initially, oleogels (OG20, OG40, OG60, OG80, and OG100) were fabricated with different sonication powers (20 %-100 %), along with control (OG) without sonication. Macrostructure, FTIR, DSC, stability coefficient (57.

View Article and Find Full Text PDF

Estimation of the effects of hand growth on muscle activation patterns: A musculoskeletal modeling study.

J Biomech

January 2025

The Joint Department of Biomedical Engineering, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; North Carolina State University, Raleigh, NC, United States.

Throughout childhood growth and development, both the nervous and the musculoskeletal systems undergo rapid change. The goal of this study was to examine the impact of growth-related changes in skeletal size and muscle strength on the neural control of finger force generation. By modifying an existing OpenSim hand model in accordance with pediatric anthropometric data, we created 10 distinct models representing males and females at each year of development from 6 to 10 years old.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!