A synergetic valorization method was proposed to convert the basic oxygen furnace (BOF) slag and stone coal into ferroalloy and glass-ceramic in this work. Effects of reduction time, temperature, and the mass ratio of BOF slag to stone coal on the reduction were studied. The reduction mechanism was investigated by in-situ observation and dissolution experiments. The effect of sintering temperature on the properties of glass-ceramics prepared from the final slag was further studied. The in-situ observation results indicate that the reduction reactions occurred mainly in the temperature range of 1673-1793 K. The reduction ratio of oxides and size of metal droplets can be improved by increasing reduction time, temperature, and decreasing stone coal addition. The recovered ferroalloys consisted of Fe, Mn, P, and V, which has the potential of returning to the steelmaking process or extracting vanadium. The modified final slag was suitable material for preparing glass-ceramic. Wollastonite-based glass-ceramic with a maximum bending strength of 95.83 MPa was prepared, which could be applied as abrasion-resistant and building decoration materials. Therefore, the present technological route can convert two kinds of industrial solid waste into two kinds of cleaner products and achieve the target of "zero waste".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2021.08.044 | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093.
J Indian Assoc Pediatr Surg
August 2024
Department of Pediatric Surgery, St. Johns Medical College and Hospital, Bengaluru, Karnataka, India.
J Environ Manage
November 2024
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China.
Melting treatment has emerged as a promising technology for managing municipal solid waste incineration (MSWI) fly ash owing to its advantageous features of effective detoxification and volume reduction. The melting treatment of MSWI fly ash involves the immobilization of heavy metals by crystals and liquid phase. Herein, the immobilization mechanism of heavy metals (Cu, Pb and Cd) by the crystals and the liquid phase was investigated using melting experiments, thermodynamic calculations and density functional theory (DFT) calculations.
View Article and Find Full Text PDFR Soc Open Sci
September 2024
School of Engineering and Technology, China University of Geosciences (Beijing), Xueyuan Road 29, Beijing 100083, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!