G-quadruplexes are non-B secondary structures with regulatory functions and therapeutic potential. Improvements in sequencing methods recently allowed the completion of the first human chromosome which is now available as a gapless, end-to-end assembly, with the previously remaining spaces filled and newly identified regions added. We compared the presence of G-quadruplex forming sequences in the current human reference genome (GRCh38) and in the new end-to-end assembly of the X chromosome constructed by high-coverage ultra-long-read nanopore sequencing. This comparison revealed that, even though the corrected length of the chromosome X assembly is surprisingly 1.14% shorter than expected, the number of G-quadruplex forming sequences found in this gapless chromosome is significantly higher, with 493 new motifs having G4Hunter scores above 1.4 and 23 new sequences with G4Hunter scores above 3.5. This observation reflects an improved precision of the new sequencing approaches and points to an underestimation of G-quadruplex propensity in the previous, widely used version of the human genome assembly, especially for motifs with a high G4Hunter score, expected to be very stable. These G-quadruplex forming sequences probably remained undiscovered in earlier genome datasets due to previously unsolved G-rich and repetitive genomic regions. These observations allow a precise targeting of these important regulatory regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2021.09.004 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.
View Article and Find Full Text PDFBiochemistry
December 2024
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Telomere repeat-binding factor 2 (TRF2) is a key component of the shelterin complex which guards the integrity of the telomere. Most of the TRF2 discussed previously was focused on the telomere, and relatively less is discussed on aspects other than that. It is proved that TRF2 also localizes to other potential G-quadruplex-forming sequences among the whole genome besides the telomere.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan; Institute of Biophotonics, National Yang Ming Chao Tung University, Taipei 11221, Taiwan; Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan; College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:
Guanine-rich oligonucleotides (GROs) can fold into G-quadruplex (G4) structures. The diverse roles of G4 structures, particularly as targets for drug design, anticancer agents, and drug delivery systems, highlight their critical significance in cancer research. However, the formation of G4 structures is highly dependent on the specific nucleotide sequences and the number of G-tracts within each GRO.
View Article and Find Full Text PDFBiochimie
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia. Electronic address:
Except for telomeres, G4 DNA structures in the human genome can be formed only within the context of double-stranded DNA. DNA duplexes flanking the G4 structure may potentially affect the G4 architecture and the binding of G4-specific ligands. Here, we examine the interaction of TMPyP4, NMM, and PDS ligands with three structures formed by the same DNA fragment containing the (GGGT) sequence: the G4 in duplex (dsG4), G4 in single-stranded DNA (ssG4) and perfect duplex DNA (ds).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!