The present study considers the mathematical modeling of unsteady non-Newtonian hydro-magnetic nano-hemodynamics through a rigid cylindrical artery featuring two different stenoses (composite and irregular). The Ostwald-De Waele power-law fluid model is adopted to simulate the non-Newtonian characteristics of blood. Inspired by drug delivery applications for cardiovascular treatments, blood is considered doped with a homogenous suspension of biocompatible nanoparticles. The arterial vessel exhibits the permeability effect (lateral influx/efflux), and an external magnetic field is also applied in the radial direction to the flow. A combination of the Buongiorno and Tiwari-Das nanoscale models is adopted. The strongly nonlinear nature of the governing equations requires a robust numerical method, and therefore the finite difference technique is deployed to solve the resulting equations. Validation of solutions for the pure blood case (absence of nanoparticles) is included. Comprehensive solutions are presented for shear-thickening (n = 1.5) and shear-thinning (n = 0.5) blood flow for the effects of crucial nanoscale thermophysical, solutal parameters, and hydrodynamic parameters. Comparison of profiles (velocity, temperature, wall shear stress, and flow rate) is also made for composite and irregular stenosis. Colour visualization of streamline plots is included for pure blood and nano mediated blood both with and without applied magnetic field. The inclusion of nanoparticles (Cu/blood) within blood increases the axial velocity of blood. By applying external magnetic field in the radial direction, axial velocity is significantly damped whereas much less dramatic alterations are computed in blood temperature and concentration profiles. The simulations are relevant to the diffusion of nano-drugs in magnetic targeted treatment of stenosed arterial diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2021.104241 | DOI Listing |
Biomol NMR Assign
January 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
PhoCl is a photocleavable protein engineered from a green-to-red photoconvertible fluorescent protein by circular permutation, and has been used in various optogenetic applications including precise control of protein localization and activity in cells. Upon violet light illumination, PhoCl undergoes a β-elimination reaction to be cleaved at the chromophore, resulting in spontaneous dissociation into a large empty barrel and a small C-terminal peptide. However, the structural determinants and the mechanism of the PhoCl photocleavage remain elusive, hindering the further development of more robust photocleavable optogenetic tools.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.
View Article and Find Full Text PDFNat Commun
January 2025
NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.
View Article and Find Full Text PDFMol Cell
January 2025
Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.
View Article and Find Full Text PDFFood Chem
January 2025
Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:
β-Cyclodextrin (β-CD) enhances functional properties by forming inclusion complexes (ICs). This study employed β-CD to form IC with fatty acid ethyl ester (FAEE) for concentrating α-Linolenic acid ethyl ester (ALAEE) from flaxseed oil FAEE, and investigated the interaction mechanisms between β-CD and ALAEE. Using the single-factor method, optimal inclusion conditions yielded an inclusion rate of 61.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!