The rhizobiome is being increasingly acknowledged as a key player in plant health and breeding strategies. The pine pitch canker (PPC), caused by the fungus Fusarium circinatum, affects pine species with varying susceptibility degrees. Our aims were to explore the bacterial rhizobiome of a susceptible (Pinus radiata) and a resistant (Pinus pinea) species together with other physiological traits, and to analyze shifts upon F. circinatum inoculation. Pinus seedlings were stem inoculated with F. circinatum spores and needle gas exchange and antioxidant-related parameters were analyzed in non-inoculated and inoculated plants. Rhizobiome structure was evaluated through 16S rRNA gene massive parallel sequencing. Species (non-inoculated plants) harbored distinct rhizobiomes (<40% similarity), where P. pinea displayed a rhizobiome with increased abundance of taxa described in suppressive soils, displaying plant growth promoting (PGP) traits and/or anti-fungal activity. Plants of this species also displayed higher levels of phenolic compounds. F. circinatum induced slight changes in the rhizobiome of both species and a negative impact in photosynthetic-related parameters in P. radiata. We concluded that the rhizobiome of each pine species is distinct and higher abundance of bacterial taxa associated to disease protection was registered for the PPC-resistant species. Furthermore, differences in the rhizobiome are paralleled by a distinct content in phenolic compounds, which are also linked to plants' resistance against PPC. This study unveils a species-specific rhizobiome and provides insights to exploit the rhizobiome for plant selection in nurseries and for rhizobiome-based plant-growth-promoting strategies, boosting environmentally friendly disease control strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpab119 | DOI Listing |
Front Microbiol
September 2024
Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.
Black pepper ( L.), a highly valued spice crop, is economically significant as one of the most widely traded spices in the world. The global yield and quality of black pepper ( L.
View Article and Find Full Text PDFBMC Plant Biol
October 2024
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Biochemical Sciences Division, National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory (CSIR-NCL), Pune, Maharashtra, 411008, India.
Water hyacinth (WH) is a widespread floating invasive aquatic plant with a prolific reproductive and dispersion rate. With the aid of its root-associated microbes, WH significantly modulates the ecosystem's functioning. Despite their irrevocable importance, the WH microbiome remains unexplored in detail.
View Article and Find Full Text PDFEnviron Res
December 2024
Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. Electronic address:
Genetically modified (GM) crop cultivation has received a lot of attention in recent years due to the substantial public debate. Consequently, an in-depth investigation of excessively used GM herbicide-tolerant crops is a vital step for the biosafety of genetically modified plants. Several studies have been conducted to study the impact of transgenic GM crops on soil microbial composition; however, research into the effects of non-transgenic GM crops is inadequate.
View Article and Find Full Text PDFNat Commun
July 2024
Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, Laboratoire d'Ecologie Microbienne LEM, CNRS UMR5557, INRAE UMR1418, Villeurbanne, F-69100, France.
Mitigating the effects of climate stress on crops is important for global food security. The microbiome associated with plant roots, the rhizobiome, can harbor beneficial microbes that alleviate stress, but the factors influencing their recruitment are unclear. We conducted a greenhouse experiment using field soil with a legacy of growing switchgrass and common bean to investigate the impact of short-term drought severity on the recruitment of active bacterial rhizobiome members.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!