Wireframe DNA origami assemblies can now be programmed automatically from the top-down using simple wireframe target geometries, or meshes, in 2D and 3D, using either rigid, six-helix bundle (6HB) or more compliant, two-helix bundle (DX) edges. While these assemblies have numerous applications in nanoscale materials fabrication due to their nanoscale spatial addressability and high degree of customization, no easy-to-use graphical user interface software yet exists to deploy these algorithmic approaches within a single, standalone interface. Further, top-down sequence design of 3D DX-based objects previously enabled by DAEDALUS was limited to discrete edge lengths and uniform vertex angles, limiting the scope of objects that can be designed. Here, we introduce the open-source software package ATHENA with a graphical user interface that automatically renders single-stranded DNA scaffold routing and staple strand sequences for any target wireframe DNA origami using DX or 6HB edges, including irregular, asymmetric DX-based polyhedra with variable edge lengths and vertices demonstrated experimentally, which significantly expands the set of possible 3D DNA-based assemblies that can be designed. ATHENA also enables external editing of sequences using caDNAno, demonstrated using asymmetric nanoscale positioning of gold nanoparticles, as well as providing atomic-level models for molecular dynamics, coarse-grained dynamics with oxDNA, and other computational chemistry simulation approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501967 | PMC |
http://dx.doi.org/10.1093/nar/gkab762 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Recent advances in computer-aided design tools have helped rapidly advance the development of wireframe DNA origami nanostructures. Specifically, automated tools now exist that can convert an input polyhedral mesh into a DNA origami nanostructure, greatly reducing the design difficulty for wireframe DNA origami nanostructures. However, one limitation of these automated tools is that they require a designer to fully conceptualize their intended nanostructure, which may be limited by their own preconceptions.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
AMPEL and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1M1,Canada.
Decorating a gold surface with molecular-level control over the positioning of DNA probes was demonstrated using a self-assembled monolayer (SAM) of wireframe DNA nanocube structures. The DNA nanocubes were specifically adsorbed and oriented using thiol-modified DNA on one face of the cube. The DNA nanocube SAM had a uniform coverage over the gold single crystal bead electrode with a separation of 20-30 nm measured by AFM.
View Article and Find Full Text PDFSmall Methods
September 2024
Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
Adv Mater
September 2024
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada.
DNA nanotechnology has revolutionized the ability to position matter at the nanoscale, but the preparation of DNA-based architectures remains laborious. To facilitate the formation of custom structures, a fully automated method is reported to produce sequence- and size-defined DNA nanotubes. By programming the sequential addition of desired building blocks, rigid DX-tile-based DNA nanotubes and flexible wireframe DNA structures are attained, where the total number of possible constructs increases as a power function of the number of different units available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!