Antimicrobial resistance (AMR) is a growing threat to human and animal health. However, in aquatic animals-the fastest growing food animal sector globally-AMR trends are seldom documented, particularly in Asia, which contributes two-thirds of global food fish production. Here, we present a systematic review and meta-analysis of 749 point prevalence surveys reporting antibiotic-resistant bacteria from aquatic food animals in Asia, extracted from 343 articles published in 2000-2019. We find concerning levels of resistance to medically important antimicrobials in foodborne pathogens. In aquaculture, the percentage of antimicrobial compounds per survey with resistance exceeding 50% (P50) plateaued at 33% [95% confidence interval (CI) 28 to 37%] between 2000 and 2018. In fisheries, P50 decreased from 52% [95% CI 39 to 65%] to 22% [95% CI 14 to 30%]. We map AMR at 10-kilometer resolution, finding resistance hotspots along Asia's major river systems and coastal waters of China and India. Regions benefitting most from future surveillance efforts are eastern China and India. Scaling up surveillance to strengthen epidemiological evidence on AMR and inform aquaculture and fisheries interventions is needed to mitigate the impact of AMR globally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433129 | PMC |
http://dx.doi.org/10.1038/s41467-021-25655-8 | DOI Listing |
IDCases
January 2025
Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia.
We report a first case of ceftazidime-resistant pediatric melioidosis involving a previously healthy seven-year-old boy who presented with right lobar pneumonia complicated with a 5-cm lung abscess. Ceftazidime was initiated on Day-6 of admission when (ceftazidime-susceptible, minimum inhibitory concentration [MIC] 1.0 mcg/mL) was isolated from blood.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.
View Article and Find Full Text PDFThe rise of drug-resistant fungal pathogens, including , highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening and revealed novel lipopeptaibiotics, coniotins, from WAC11161, which were undetectable in crude extracts.
View Article and Find Full Text PDFJAC Antimicrob Resist
February 2025
Zoetis Reference Laboratory, Shanghai, China.
Objectives: In this study, bacteria isolated from companion animals in China were taxonomically identified and assessed for antimicrobial susceptibility to evaluate the prevalence of antimicrobial resistance (AMR) in pets.
Methods: From October 2022 to October 2023, 5468 samples were collected from pets, predominantly from cats and dogs, in China, of which 5253 bacterial strains were identified (>98%). Antimicrobial susceptibility was assessed using the VITEK 2 COMPACT system and the Kirby-Bauer disc diffusion method.
Acta Naturae
January 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation.
The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!