Prebiotics are compounds naturally present in some foods or can be synthesized by microorganisms and enzymes. Among the benefits associated with prebiotic consumption are the modulation of the intestinal microbiota that increase the production of short chain fatty acids and prevent the development of some disorders such as colon cancer, irritable bowel syndrome, diabetes, obesity, among others. Traditionally, prebiotics have been used in diverse food formulations to enhance their healthy potential or to improve their technological and sensory properties. However, different alternatives for the production of prebiotic products are being explored, such as edible coatings and films. Therefore, this review aims to highlight recent research on edible coatings and films incorporated with different prebiotics, the concept of prebiotics, the general characteristics of these materials, and the main production methods, as well as presenting the perspectives of uses in the food industry. Current works describe that polyols and oligosaccharides are the most employed prebiotics, and depending on their structure and concentration, they can also act as film plasticizer or reinforcement agent. The use of prebiotic in the coating can also improve probiotic bacteria survival making it possible to obtain fruits and vegetables with synbiotic properties. The most common method of production is casting, suggesting that other technologies such as extrusion can be explored aiming industrial scale. The use of film and coating carried of prebiotic is an emerging technology and there are still several possibilities for study to enable its use in the food industry. This review will be useful to detect the current situation, identify problems, verify new features, future trends and support new investigations and investments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2021.110629 | DOI Listing |
J Sci Food Agric
January 2025
University of Agricultural Sciences, Bengaluru, India.
Background: The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives.
Results: The EtOH extracts of germinated O.
Food Chem
April 2025
School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou 550025, PR China. Electronic address:
Edible films are significant in prolonging the shelf life of meat products. Herein, we prepared some edible coatings (EW/TNPCSs) based on egg white/chitosan/pectin as polymer matrix, containing tannic acid-nisin composite nano-crosslinker with antibacterial-antioxidant activities. The results of preservation indicated that the prepared EW/TNPCSs reduced the water loss of chilled pork and delayed the changes of taste, texture and surface color.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Spice and Beverage Research, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya 572019, China. Electronic address:
Starch-based foods are the most common foods in the daily diets. However, starch-based foods are prone to starch retrogradation, resulting in texture hardening, taste deterioration and nutrient loss. This paper reviewed the mechanisms and the influencing factors of starch retrogradation in starch-based foods, and the strategies to mitigate it.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.
This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India.
Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!