Wheat, an essential ingredient for several bakery preparations, is also responsible for gluten-related diseases in sensitive subjects. The effect of the N fertilization rate (80 vs 160 kg N ha) on gluten protein expression profile has been evaluated considering two soft wheats (landrace and modern) and one tritordeum cultivar (cv), grown in the same experimental field in North Italy. The proteins of refined flour were characterized through advanced proteomic approaches, including chromatography (RP-HPLC) and electrophoresis. A static model system was used to simulate in vitro digestion and the digestome peptides were examined by mass spectrometry and in silico approaches, to investigate the celiac and allergenic sequences. The CD-toxic epitopes in the digested samples were quantified by means of a R5 ELISA assay. The N fertilization rate increased the grain protein content, but it did not lead to any difference in gluten composition, with exception of glu/glia ratio in the modern wheat cv. Moreover, the gluten composition and the occurrence of toxic/allergenic epitopes varied to a great extent, according mostly to the genotype. A lower immunoreactivity, determined using R5 ELISA, was detected for the digested tritordeum flours than for the landrace (-51%) or modern (-58%) cvs, while no significant difference was observed for the N rates between each genotype. In silico analysis showed that tritordeum has fewer CD epitopes belonging to the ω-gliadins and a lower LMW-GS than the landrace or modern cv. Tritordeum presented fewer α-gliadin allergenic epitopes than the modern wheat cv. The lower frequency of celiac epitopes in tritordeum, compared to the old and the modern wheat, is probably due to the absence of a D genome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2021.110617DOI Listing

Publication Analysis

Top Keywords

modern wheat
12
fertilization rate
8
landrace modern
8
modern tritordeum
8
gluten composition
8
tritordeum
6
modern
6
wheat
5
epitopes
5
nitrogen fertilization
4

Similar Publications

Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity.

J Fungi (Basel)

January 2025

College of Plant Protection, Hebei Agricultural University, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071000, China.

Wheat leaf rust caused by () is a prevalent disease worldwide, seriously threatening wheat production. acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of and effective control of leaf rust.

View Article and Find Full Text PDF

Monitoring of agricultural progress in rice-wheat rotation area based on UAV RGB images.

Front Plant Sci

January 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.

Real-time monitoring of rice-wheat rotation areas is crucial for improving agricultural productivity and ensuring the overall yield of rice and wheat. However, the current monitoring methods mainly rely on manual recording and observation, leading to low monitoring efficiency. This study addresses the challenges of monitoring agricultural progress and the time-consuming and labor-intensive nature of the monitoring process.

View Article and Find Full Text PDF

Currently in wheat breeding, genome wide association studies (GWAS) have successfully revealed the genetic basis of complex traits such as nitrogen use efficiency (NUE) and its biological processes. In the GWAS model, thresholding is common strategy to indicate deviation of expected range of -(s), and it can be used to find the distribution of true positive associations under or over of test statistics. Therefore, the threshold plays a critical role to identify reliable and significant associations in wide genome, while the proportion of false positive results is relatively low.

View Article and Find Full Text PDF

Long-term diverse straw management influences arbuscular mycorrhizal fungal community structure and plant growth in a rice-rotated wheat cropping system.

J Environ Manage

January 2025

College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Communities of arbuscular mycorrhizal fungi (AMF) in soil are influenced by various agricultural managements, which in turn affects crop productivity. However, the impacts of straw returning on AMF communities are sparsely understood. Here, a 7-year field experiment including three sets of straw managements - returning methods (CK: no-tillage without straw; RT-SR: rotary tillage with straw; DB-SR: ditch-buried tillage with straw), burial amount, burial depth - were applied to evaluate the influences of straw managements on AMF composition.

View Article and Find Full Text PDF

Dynamics of wheat rhizosphere microbiome and its impact on grain production across growth stages.

Sci Total Environ

January 2025

School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China.

Crop plant microbiomes are increasingly seen as important in plant nutrition and health, and a key to maintaining food productivity. Currently, little is known of the temporal changes that occur in the wheat rhizosphere microbiome as the plant develops, and how this varies among different sites. We used a pot-based mesocosm experiment with the same modern wheat cultivar grown in eight soils from across the North China Plain, a major wheat producing area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!