A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis. | LitMetric

Ginsenoside Rg1 promoted the wound healing in diabetic foot ulcers via miR-489-3p/Sirt1 axis.

J Pharmacol Sci

Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410016, Hunan Province, PR China.

Published: November 2021

Purpose: Diabetic foot ulcers (DFUs) are common complications of high severity for diabetes. Ginsenoside Rg1 (Rg1) has the potential for diabetes and cardiovascular diseases therapy. This research aimed at exploring the regulation of Rg1 on DFUs treatment and the underlying mechanism.

Methods: Human umbilical vein endothelial cells (HUVECs) incubated with high-glucose culture medium were established for induction of diabetes model. The MTT assay, Annexin V/PI assay and oxidative stress detection were carried out on high-glucose-induced HUVECs. Dual-luciferase reporter assay was performed to prove the interaction of miR-489-3p and Sirt1. DFUs model was established to determine the efficiency of Rg1 and miR-489-3p in wound closure of DFUs in vivo.

Results: Rg1 promoted cell proliferation, migration and angiogenesis, and reduced cell apoptosis in high-glucose-induced HUVECs. Knockdown of miR-489-3p alleviated the high-glucose-induced damage to HUVECs, while overexpression of miR-489-3p attenuated the protection effects of Rg1. Overexpression Sirt1 promoted wound healing in DFUs and Sirt1 was a direct target of miR-489-3p. In addition, animal experiments demonstrated that Rg1 promoted wound closure by regulating miR-489-3p/Sirt1 axis.

Conclusions: Rg1 alleviated the DFUs by increasing Sirt1 expression via miR-489-3p downregulation and promoting activation of PI3K/AKT/eNOS signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2021.07.008DOI Listing

Publication Analysis

Top Keywords

rg1 promoted
12
promoted wound
12
ginsenoside rg1
8
wound healing
8
diabetic foot
8
foot ulcers
8
rg1
8
high-glucose-induced huvecs
8
wound closure
8
dfus
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!