Focal chondral defects (FCDs) of the knee can be a debilitating condition that can clinically translate into pain and dysfunction in young patients with high activity demands. Both the understanding of the etiology of FCDs and the surgical management of these chondral defects has exponentially grown in recent years. This is reflected by the number of surgical procedures performed for FCDs, which is now approximately 200,000 annually. This fact is also apparent in the wide variety of available surgical approaches to FCDs. Although simple arthroscopic debridement or microfracture are usually the first line of treatment for smaller lesions, chondral lesions that involve a larger area or depth require restorative procedures such as osteochondral allograft transplantation or other cell-based techniques. Given the prevalence of FCDs and the increased attention on treating these lesions, a comprehensive understanding of management from diagnosis to rehabilitation is imperative for the treating surgeon. This narrative review aims to describe current concepts in the treatment of large FCDs through providing an algorithmic approach to selecting interventions to address these lesions as well as the reported outcomes in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0041-1735278DOI Listing

Publication Analysis

Top Keywords

chondral defects
8
fcds
6
large focal
4
focal isolated
4
chondral
4
isolated chondral
4
chondral lesion
4
lesion focal
4
focal chondral
4
defects fcds
4

Similar Publications

Therapeutic efficacy of intra-articular injection of human adipose-derived mesenchymal stem cells in a sheep model of knee osteoarthritis.

Stem Cell Res Ther

January 2025

Cellular Biopharma (Shanghai) Co., Ltd, Building 3, No.85, Faladi Road, Pudong New Area, Shanghai, 200233, China.

Background: Mesenchymal stem cells have great potential for repairing articular cartilage and treating knee osteoarthritis (KOA). Nonetheless, little is known about the efficacy of human adipose-derived mesenchymal stem cells (haMSCs) for KOA in large animal models.

Methods: This study evaluated the therapeutic efficacy of haMSCs in knee articular cartilage repair in a sheep model of KOA.

View Article and Find Full Text PDF

Background: Full-thickness cartilage defects have a significant impact on the function of joints in young adults, and the treatment of cartilage defects has been a challenge, as cartilage tissue is an avascular tissue. This study aimed to compare the clinical and radiological outcomes of Biphasic Cartilage Repair Implant (BiCRI) and microfracture treatments for knee cartilage defects.

Methods: This randomized controlled clinical trial enrolled patients with symptomatic knee chondral lesions smaller than 3 cm.

View Article and Find Full Text PDF

Background: Osteochondral allograft transplantation (OCA) is well established as a viable chondral restoration procedure for the treatment of symptomatic, focal chondral defects of the knee. The efficacy of secondary OCA in the setting of failed index cartilage repair or restoration is poorly understood.

Purpose: To evaluate radiographic and clinical outcomes, failures, and reoperations after OCA after failed index cartilage repair or restoration of the knee.

View Article and Find Full Text PDF

Deer antler reserve mesenchyme cells modified with miR-145 promote chondrogenesis in cartilage regeneration.

Front Vet Sci

December 2024

Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, China.

Deer antler-derived reserve mesenchyme cells (RMCs) are a promising source of cells for cartilage regeneration therapy due to their chondrogenic differentiation potential. However, the regulatory mechanism has not yet been elucidated. In this study, we analyzed the role of microRNAs (miRNAs) in regulating the differentiation of RMCs and in the post-transcriptional regulation of chondrogenesis and hypertrophic differentiation at the molecular and histological levels.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!