Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cartilage damage is one of the main causes of disability, and 3D bioprinting technology can produce complex structures that are particularly suitable for constructing a customized and irregular tissue engineering scaffold for cartilage repair. Alginate is an attractive biomaterial for bioinks because of its good biological safety profile and fast ionic gelation. However, ionically crosslinked alginate hydrogels are recognized as lacking enough mechanical property and long-term stability due to ion exchange. Here, we developed a double crosslinked alginate (DC-Alg) hydrogel for 3D bioprinting, and human umbilical cord mesenchymal stem cells (huMSCs) could differentiate into chondrocytes on its printed 3D scaffold after 4 weeks' culture. We performed sequential modification of alginate with L-cysteine and 5-norbornene-2-methylamine, and the DC-Alg hydrogels were obtained in the presence of CaCland ultraviolet light with stronger mechanical properties than those of the single ionic crosslinked alginate hydrogels, which was similar to natural cartilage. They also had better stability and could be maintained in DMEM medium for over 1 month, as well good viability for huMSCs. Moreover, the DC-Alg as 3D printing inks demonstrated a better printing accuracy (∼200 µm). After 4 weeks culture of huMSCs in the 3D printed DC-Alg scaffolds, the expressions of chondrogenic genes such as99) were obviously observed, indicating the differentiation of huMSCs into cartilage. Immumohistochemical staining analysis further exhibited cartilage tissue developed well in the 3D printed scaffolds. Our study is the first demonstration of DC-Alg in 3D printing for MSC differentiation into cartilage, which shows a potential application in cartilage defect repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ac2595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!