Objective: Temporal lobe encephaloceles (TLENs) are a significant cause of medically refractory epilepsy, but there is little consensus regarding their workup and treatment. This study characterizes these lesions and their role in seizures and aims to standardize preoperative evaluation and surgical management.
Methods: Patients with TLEN who had undergone resective epilepsy surgery from December 2015 to August 2020 at a single institution were included in the study. Medical records were reviewed for each patient to collect relevant seizure workup information including demographics, radiological findings, surgical data, and neuropsychological evaluation.
Results: For patients who presented to the authors' program with suspected medically intractable temporal lobe epilepsy (219 patients), TLEN was considered to be the epileptogenic focus in 5.5%. Ten patients with TLEN had undergone resection and were included in this study. Concordance between ictal scalp electroencephalography (EEG) lateralization and TLEN was found in 9/10 patients (90%), and 4/10 patients (40%) had signs suggestive of idiopathic intracranial hypertension (IIH). Surgical outcome was reported in patients with at least 12 months of follow-up (9/10). Patients with scalp EEG findings concordant with the TLEN side had a good outcome (Engel class I: 7 patients, class II: 1 patient). One patient with discordant EEG findings had a bad outcome (Engel class III). No significant neuropsychological deficits were observed after the surgery.
Conclusions: TLENs are epileptogenic lesions that should be screened for in patients with medically refractory epilepsy who have signs of IIH and no other lesions on MRI. Restricted resection is safe and effective in patients with scalp EEG findings concordant with TLEN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2021.3.JNS21133 | DOI Listing |
Front Neurol
January 2025
Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.
Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.
Front Neurosci
January 2025
Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
[This corrects the article DOI: 10.3389/fnins.2024.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China.
Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.
View Article and Find Full Text PDFCureus
December 2024
Department of Clinical and Forensic Neuroscience, University of Veracruz, Boca del Río, MEX.
Temporal lobe epilepsy (TLE) represents a prevalent form of focal epilepsy that often requires surgical intervention and can be resistant to antiseizure medications. Its epidemiology varies across regions due to diagnostic challenges and underestimation of individual neurological traits. Despite these complexities, TLE accounts for a significant proportion of total epilepsies worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!