Previously, pheasant motilin was identified as a 22-amino acid peptide with a sequence of FVPFFTQSDI QKMQEKERIK GQ. In the present study, the distribution of pheasant motilin mRNA was determined and compared with that of ghrelin, a motilin-related peptide. The effects of pheasant motilin on the cognate gastrointestinal (GI) muscle strips were also examined in an in vitro contraction study. The expression of pheasant motilin mRNA was highest in the small intestine (duodenum, jejunum and ileum), moderate in the colon and very low in the brain, lung, heart, pancreas, esophagus, proventriculus, gizzard and caecum, and this distribution was in contrast with that of ghrelin mRNA. Pheasant motilin caused contraction of the cognate GI tract in a region-dependent manner, similar to chicken motilin. The contraction in the small intestine was large and was not affected by atropine. In contrast, contraction in the proventriculus was small and was decreased by atropine. The crop and colon were insensitive to pheasant motilin. Neither GM109 nor MA2029, mammalian motilin receptor antagonists inhibited the contractions of pheasant motilin. Erythromycin was ineffective in the pheasant ileum, although it caused contraction of the rabbit duodenum. These results indicate that pheasant motilin caused contraction through an action on smooth muscles in the small intestine and an action on enteric cholinergic nerves in the proventriculus. This high responsiveness of the small intestine suggests that motilin is a regulator of small intestinal motility in avians, and the characteristic of the motilin receptor in the pheasant might be different from that in mammals, as is that in chickens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygcen.2021.113897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!