Nonsteroidal anti-inflammatory drugs (NSAIDs) are used worldwide as antipyretic analgesics and agents for rheumatoid arthritis and osteoarthritis, but known to cause damage to the gastrointestinal mucosae as their serious adverse effects. Few studies showed the impairment of intestinal epithelial barrier function (EBF) by high concentrations (0.5-1 mM) of NSAIDs, but the underlying mechanism is not fully understood. This study is aimed at clarifying effects at a low concentration (50 μM) of three NSAIDs, loxoprofen (Lox), ibuprofen and indomethacin, on intestinal EBF using human intestinal epithelial-like Caco-2 cells. Among those NSAIDs, Lox increased the transepithelial electric resistance (TER) value, decreased the paracellular Lucifer yellow CH (LYCH) permeability, and upregulated claudin (CLDN)-1, -3 and -5, indicating that low doses of Lox enhanced EBF through increasing expression of CLDNs. Lox is known to be metabolized to a pharmacologically active metabolite, (2S,1'R,2'S)-loxoprofen alcohol (Lox-RS), by carbonyl reductase 1 (CBR1), which is highly expressed in human intestine. CBR1 was expressed in the Caco-2 cells, and the pretreatment with a CBR1 inhibitor suppressed both the Lox-evoked CLDN upregulation and EBF enhancement. In addition, the treatment of the cells with Lox-RS resulted in higher TER value and lower LYCH permeability than those with Lox. Thus, Lox-RS synthesized by CBR1 may greatly contribute to the improving efficacy of Lox on the barrier function. Since EBF is decreased in inflammatory bowel disease, we finally examined the effect of Lox on EBF using the Caco-2/THP-1 co-culture system, which is used as an in vitro inflammatory bowel disease model. Lox significantly recovered EBF which was impaired by inflammatory cytokines secreted from THP-1 macrophages. These in vitro observations suggest that Lox enhances intestinal EBF, for which the metabolism of Lox to Lox-RS by CBR1 has an important role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2021.109634DOI Listing

Publication Analysis

Top Keywords

barrier function
12
lox
10
enhances intestinal
8
active metabolite
8
carbonyl reductase
8
ebf
8
function ebf
8
intestinal ebf
8
lych permeability
8
lox lox-rs
8

Similar Publications

Background: Mental health remains among the top 10 leading causes of disease burden globally, and there is a significant treatment gap due to limited resources, stigma, limited accessibility, and low perceived need for treatment. Problem Management Plus, a World Health Organization-endorsed brief psychological intervention for mental health disorders, has been shown to be effective and cost-effective in various countries globally but faces implementation challenges, such as quality control in training, supervision, and delivery. While digital technologies to foster mental health care have the potential to close treatment gaps and address the issues of quality control, their development requires context-specific, interdisciplinary, and participatory approaches to enhance impact and acceptance.

View Article and Find Full Text PDF

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

Chrysanthemum extract mitigates high-fat diet-induced inflammation, intestinal barrier damage and gut microbiota disorder.

Food Funct

January 2025

Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.

An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.

View Article and Find Full Text PDF

Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.

View Article and Find Full Text PDF

Objective: The fabrication of furosemide (FSM) with enhanced oral bioavailability and encapsulation was achieved using a nanostructured lipid carriers (NLCs) drug delivery system.: The uniform drug distribution is a barrier due to its low dose. The lipid-based delivery system was selected based on its poor solubility and permeability, limiting its poor partitioning and solubility in water-based polymeric delivery systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!