Simultaneous targeting of TGF-β/PD-L1 synergizes with radiotherapy by reprogramming the tumor microenvironment to overcome immune evasion.

Cancer Cell

German Cancer Consortium (DKTK) Core-Center, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Divisions of Molecular & Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany; CCU Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), 69120 Heidelberg, Germany. Electronic address:

Published: October 2021

Localized radiotherapy (RT) induces an immunogenic antitumor response that is in part counterbalanced by activation of immune evasive and tissue remodeling processes, e.g., via upregulation of programmed cell death-ligand 1 (PD-L1) and transforming growth factor β (TGF-β). We report that a bifunctional fusion protein that simultaneously inhibits TGF-β and PD-L1, bintrafusp alfa (BA), effectively synergizes with radiotherapy, leading to superior survival in multiple therapy-resistant murine tumor models with poor immune infiltration. The BA + RT (BART) combination increases tumor-infiltrating leukocytes, reprograms the tumor microenvironment, and attenuates RT-induced fibrosis, leading to reconstitution of tumor immunity and regression of spontaneous lung metastases. Consistently, the beneficial effects of BART are in part reversed by depletion of cytotoxic CD8 T cells. Intriguingly, targeting of the TGF-β trap to PD-L1 endothelium and the M2/lipofibroblast-like cell compartment by BA attenuated late-stage RT-induced lung fibrosis. Together, the results suggest that the BART combination has the potential to eradicate therapy-resistant tumors while sparing normal tissue, further supporting its clinical translation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2021.08.008DOI Listing

Publication Analysis

Top Keywords

synergizes radiotherapy
8
tumor microenvironment
8
bart combination
8
simultaneous targeting
4
targeting tgf-β/pd-l1
4
tgf-β/pd-l1 synergizes
4
radiotherapy reprogramming
4
tumor
4
reprogramming tumor
4
microenvironment overcome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!