Lignin Resists High-Intensity Electron Beam Irradiation.

Biomacromolecules

Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria.

Published: October 2021

The electron beam irradiation (EBI) of native lignin has received little attention. Thus, its potential use in lignin-based biorefineries is not fully understood. EBI was applied to selected lignin samples and the structural and chemical changes were analyzed, revealing the suitability, limitations, and potential purpose of EBI in wood biorefineries. Isolated milled wood, kraft, and sulfite lignin from beech and eucalyptus were subjected to up to 200 kGy of irradiation. The analysis included gel permeation chromatography for molar masses, heteronuclear single quantum coherence (HSQC)- and P NMR and headspace gas chromatography-mass spectrometry for functional groups, and thermogravimetric analysis for thermal stability. Most samples resisted irradiation. Subtle changes occurred in the molecular weight distribution and thermal stability of milled wood lignin. EBI was found to be a suitable pretreatment method for woody biomass if the avoidance of lignin condensation and chemical modification is a high priority.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512668PMC
http://dx.doi.org/10.1021/acs.biomac.1c00926DOI Listing

Publication Analysis

Top Keywords

electron beam
8
beam irradiation
8
milled wood
8
thermal stability
8
lignin
6
lignin resists
4
resists high-intensity
4
high-intensity electron
4
irradiation
4
irradiation electron
4

Similar Publications

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.

View Article and Find Full Text PDF

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!