Background And Purpose: Multiple system atrophy(MSA) is a rare adult-onset synucleinopathy that can be divided in two subtypes depending on whether the prevalence of its symptoms is more parkinsonian or cerebellar (MSA-P and MSA-C, respectively). The aim of this work is to investigate the structural MRI changes able to discriminate MSA phenotypes.

Methods: The sample includes 31 MSA patients (15 MSA-C and 16 MSA-P) and 39 healthy controls. Participants underwent a comprehensive motor and neuropsychological battery. MRI data were acquired with a 3T scanner (MAGNETOM Trio, Siemens, Germany). FreeSurfer was used to obtain volumetric and cortical thickness measures. A Support Vector Machine (SVM) algorithm was used to assess the classification between patients' group using cortical and subcortical structural data.

Results: After correction for multiple comparisons, MSA-C patients had greater atrophy than MSA-P in the left cerebellum, whereas MSA-P showed reduced volume bilaterally in the pallidum and putamen. Using deep gray matter volume ratios and mean cortical thickness as features, the SVM algorithm provided a consistent classification between MSA-C and MSA-P patients (balanced accuracy 74.2%, specificity 75.0%, and sensitivity 73.3%). The cerebellum, putamen, thalamus, ventral diencephalon, pallidum, and caudate were the most contributing features to the classification decision (z > 3.28; p < .05 [false discovery rate]).

Conclusions: MSA-C and MSA-P with similar disease severity and duration have a differential distribution of gray matter atrophy. Although cerebellar atrophy is a clear differentiator between groups, thalamic and basal ganglia structures are also relevant contributors to distinguishing MSA subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.12927DOI Listing

Publication Analysis

Top Keywords

multiple system
8
gray matter
8
msa-c msa-p
8
cortical thickness
8
svm algorithm
8
msa-p
5
differentiation multiple
4
system atrophy
4
atrophy subtypes
4
subtypes gray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!