Duck Tembusu virus (DTMUV), an emergent flavivirus, causes domestic waterfowls to suffer from severe egg-drop syndrome and fatal encephalitis, greatly threatens duck production globally. Like other mosquito-borne flaviviruses, the envelope (E) protein of all DTMUV strains was N-glycosylated at the amino acid position 154. Thus far, the biological roles of DTMUV E glycosylation have remained largely unexplored. Herein, we demonstrated the key roles of E glycosylation in the replication and pathogenicity of DTMUV in ducks by characterizing the reverse-genetics-derived DTMUV wild-type MC strain and MC bearing mutations (N154Q and N154I) that abolish the E glycosylation. Our data showed that the disruption of E glycosylation could substantially impair virus attachment, entry, and infectivity in DEFs and C6/36 cells. Notably, ducks inoculated intracerebrally with the wild-type virus exhibited severe disease onset. In contrast, those inoculated with mutant viruses were mildly affected as manifested by minimal weight loss, no mortality, lower viral loads in the various tissues, and reduced brain lesions. Attenuated phenotypes of the mutant viruses might be partly associated with lower inflammatory cytokines expression in the brains of infected ducks. Our study offers the first evidence that E glycosylation is vital for DTMUV replication, pathogenicity, and neurovirulence .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437475 | PMC |
http://dx.doi.org/10.1080/21505594.2021.1974329 | DOI Listing |
Poult Sci
January 2025
Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China. Electronic address:
As a significant emerging and re-emerging pathogen in China, the widely spread of Duck Tembusu virus (DTMUV) caused enormous economic losses to poultry industry. On account of DTMUV diseases' main symptoms on haemorrhagic oophoritis, intensive attentions were focused on female reproductive organ. Nevertheless, the DTMUV infection of sperm and testis manifested that testis was an important vector for vertical transmission of DTMUV.
View Article and Find Full Text PDFViruses
November 2024
College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Duck Tembusu virus (DTMUV), a novel positive-sense RNA virus, has caused significant economic losses in the poultry industry of Eastern and Southeast Asia since its outbreak in 2010. Furthermore, the rapid transmission and potential zoonotic nature of DTMUV pose a threat to public health safety. In this study, a 4D-DIA quantitative proteomics approach was employed to identify differentially expressed cellular proteins in DTMUV-infected DF-1 cells, which are routinely used for virus isolation and identification for DTMUV, as well as the development of vaccines against other poultry viruses.
View Article and Find Full Text PDFMicroorganisms
November 2024
Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi Grass Station, Guangxi University, Nanning 530004, China.
Duck Tembusu virus (DTMUV), duck hepatitis virus (DHV), Muscovy duck reovirus (MDRV), and Muscovy duck parvovirus (MDPV) represent four emergent infectious diseases impacting waterfowl, which can be challenging to differentiate due to overlapping clinical signs. In response to this, we have developed a one-step multiplex real-time fluorescence quantitative reverse transcription PCR (qRT-PCR) assay, capable of simultaneously detecting DTMUV, DHV, MDRV, and MDPV. This method exhibits high specificity, avoiding cross-reactivity with other viruses such as Fowl adenoviruses (FADV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Haemophilus paragallinarum (Hpg), duck circovirus (DUCV), goose astrovirus (GoAstV), and mycoplasma gallisepticum (MG).
View Article and Find Full Text PDFVet Microbiol
February 2025
State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China. Electronic address:
Poult Sci
December 2024
Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330. Electronic address:
Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is notably associated with neurological disorders and acute egg drop syndrome in ducks. We previously demonstrated that the susceptibility of ducks to DTMUV infection varies significantly with age, with younger ducks (4-week-old) exhibiting more severe disease than older ducks (27-week-old). However, the immunological mechanisms underlying these age-related differences in disease severity remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!