Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal expression [ = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, , , , , and , and that from the exosomal pool, that is, , were upregulated in hVSMCs during replicative senescence ( = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging. This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00058.2021 | DOI Listing |
Zhejiang Da Xue Xue Bao Yi Xue Ban
December 2024
Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
Diabetic nephropathy is a common microvascular complication of diabetes mellitus and one of the main causes of death in patients with diabetes mellitus. Ferroptosis is a newly discovered iron-dependent regulated cell death, which may contribute to the pathogenesis and development of diabetic nephropathy. Adenosine monophosphate-activated protein kinase (AMPK)-mediated ferroptosis-related signaling pathways can slow down the progression of diabetic nephropathy, but excessive activation of AMPK signaling pathway may induce cells to undergo autophagic death.
View Article and Find Full Text PDFToxicol Lett
January 2025
Department of Public Health,International College,Krirk University, Bangkok 10220, Thailand; School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China. Electronic address:
Rare earth is used extensively around the world, and rare earth particles cause a respiratory disease in workers termed rare earth pneumoconiosis(REP) that have attracted considerable attention. However, the mechanisms of REP, characterized by diffuse pulmonary fibrosis, are elusive. REP progression involves various signaling pathway networks comprising numerous cell types and cytokines.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, People's Republic of China.
Background: Qingre Huoxue Decoction (QRHX) is a classical Chinese herbal prescription widely used in clinical practice for the treatment of atherosclerosis (AS). Our previous study demonstrated its efficacy in stabilizing plaque and improving prognosis, as well as its ability to regulate macrophage polarization. This study aimed to further investigate the effects of QRHX on AS and explore the underlying mechanisms.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, The Second Clinical Medical School, The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, 730000, China.
Background: Tumor-associated macrophages (TAMs), particularly M2-polarized TAMs, are significant contributors to tumor progression, immune evasion, and therapy resistance in gastric cancer (GC). Despite efforts to target TAM recruitment or depletion, clinical efficacy remains limited. Consequently, the identification of targets that specifically inhibit or reprogram M2-polarized TAMs presents a promising therapeutic strategy.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
Background: The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!