Characterization of Catecholaldehyde Adducts with Carnosine and l-Cysteine Reveals Their Potential as Biomarkers of Catecholaminergic Stress.

Chem Res Toxicol

Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, 180 South Grand Avenue, Iowa City, Iowa 52242, United States.

Published: October 2021

Monoamine oxidase (MAO) catalyzes the oxidative deamination of dopamine and norepinephrine to produce 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL), respectively. Both of these aldehydes are potently cytotoxic and have been implicated in pathogenesis of neurodegenerative and cardiometabolic disorders. Previous work has demonstrated that both the catechol and aldehyde moieties of DOPAL are reactive and cytotoxic via their propensity to cause macromolecular cross-linking. With certain amines, DOPAL likely reacts via a Schiff base before oxidative activation of the catechol and rearrangement to a stable indole product. Our current work expands on this reactivity and includes the less-studied DOPEGAL. Although we confirmed that antioxidants mediated DOPAL's reactivity with carnosine and -acetyl-l-lysine, antioxidants had no effect on reactivity with l-cysteine. Therefore, we propose a non-oxidative mechanism where, following Schiff base formation, the thiol of l-cysteine reacts to form a thiazolidine. Similarly, we demonstrate that DOPEGAL forms a putative thiazolidine conjugate with l-cysteine. We identified and characterized both l-cysteine conjugates via HPLC-MS and additionally identified a DOPEGAL adduct with carnosine, which is likely an Amadori product. Furthermore, we were able to demonstrate that these conjugates are produced in biological systems via MAO after treatment of the cell lysate with norepinephrine or dopamine along with the corresponding nucleophiles (i.e., l-cysteine and carnosine). As it has been established that metabolic and oxidative stress leads to increased MAO activity and accumulation of DOPAL and DOPEGAL, it is conceivable that conjugation of these aldehydes to carnosine or l-cysteine is a newly identified detoxification pathway. Furthermore, the ability to characterize these adducts via analytical techniques reveals their potential for use as biomarkers of dopamine or norepinephrine metabolic disruption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527522PMC
http://dx.doi.org/10.1021/acs.chemrestox.1c00153DOI Listing

Publication Analysis

Top Keywords

carnosine l-cysteine
8
reveals potential
8
potential biomarkers
8
dopamine norepinephrine
8
schiff base
8
l-cysteine
7
carnosine
5
dopegal
5
characterization catecholaldehyde
4
catecholaldehyde adducts
4

Similar Publications

The biosynthesis of amino acid derivatives of animal origin in plants represents a promising frontier in synthetic biology, offering a sustainable and eco-friendly approach to enhancing the nutritional value of plant-based diets. This study leverages the versatile capabilities of as a transient expression system to test a synthetic modular framework for the production of creatine, carnosine, and taurine-compounds typically absent in plants but essential for human health. By designing and stacking specialized synthetic modules, we successfully redirected the plant metabolic flux toward the synthesis of these amino acid derivatives of animal origin.

View Article and Find Full Text PDF

Background: Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro.

View Article and Find Full Text PDF

Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats.

View Article and Find Full Text PDF

Effects of Dietary l-Glutamine Supplementation on the Intestinal Function and Muscle Growth of Piglets.

Life (Basel)

March 2024

Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.

The aim of this study was to investigate the effects of dietary l-glutamine (Gln) supplementation on the morphology and function of the intestine and the growth of muscle in piglets. In this study, sixteen 21-day-old piglets were randomly divided into two groups: the Control group (fed a basal diet) and the Gln group (fed a basal diet supplemented with 0.81% Gln).

View Article and Find Full Text PDF

The aim of the present study was to identify and quantify the metabolites (metabolome analysis) of the pectoralis major muscle in male red-winged tinamou (Rhynchotus rufescens) selected for growth traits. A selection index was developed for females [body weight (BW), chest circumference (CC), and thigh circumference (TC)] and males [BW, CC, TC, semen volume, and sperm concentration] in order to divide the animals into 2 experimental groups: selection group with a higher index (TinamouS) and commercial group with a lower index (TinamouC). Twenty male offspring of the 2 groups (TinamouS, n = 10; TinamouC, n = 10) were confined for 350 d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!