This work reports for the first time a straightforward and efficient approach to covalent surface functionalization of a sustainable graphene-like nanomaterial with abundant carboxylic acid groups. This approach results in an efficient and robust chelatant platform for anchoring highly dispersed ultrasmall palladium particles with excellent catalytic activity in the reduction of both cationic (methylene blue, MB) and anionic (eosin-Y, Eo-Y) toxic organic dyes. The large-specific-surface-area ( = 266.94 m/g) graphene-like nanomaterial (GHN) was prepared through a green and cost-effective pyrolysis process from saccharose using layered bentonite clay as a template. To introduce a high density of carboxylic acid functions, GHN was first doubly functionalized by successive grafting reaction using two different strategies: (i) in the first case, GHN was first grafted by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) and then bifunctionalized by chemical grafting of tris(4-hydroxyphenyl)methane triglycidyl ether (TGE). In the second case, the grafting order of the two molecules has been reversed. GHN-GPTMS-TGE provided the highest number of grafted reactive epoxy groups, and it was selected for further functionalization with carboxylic acid functions via a ring-opening reaction through a two-step hydrolysis (HSO)/oxidation (KMnO) approach. The GHN nanomaterial bearing carboxylic acid groups was then treated with sodium hydroxide to produce a deprotonated carboxylic acid-rich platform. Finally, due to a high density of accessible chelatant carboxylic acid groups, GHN-COO binds strongly a great amount of Pd ions to form stable complexes which after reduction by NaBH leads to highly dispersed, densely anchored, and uniformly distributed nanoscale Pd particles ( ∼ 4.5 nm) on the surface of the functionalized GHN. The GHN-COO@PdNPs nanohybrid proved to be highly efficient for dye reduction by NaBH in aqueous solution at room temperature. Moreover, because of the high stability of the as-prepared graphene-like supported PdNPs, it exhibited very good reusability and could be recycled up to eight times without any significant loss in activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07540DOI Listing

Publication Analysis

Top Keywords

carboxylic acid
20
graphene-like nanomaterial
12
acid groups
12
surface functionalization
8
highly dispersed
8
high density
8
acid functions
8
reduction nabh
8
carboxylic
6
acid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!