The first of three International Society for Molecular Plant-Microbe Interactions (IS-MPMI) eSymposia was convened on 12 and 13 July 2021, with the theme "Molecular Mechanism & Structure-Zooming in on Plant Immunity". Hosted by Jian-Min Zhou (Beijing, China) and Jane Parker (Cologne, Germany), the eSymposium centered on "Top 10 Unanswered Questions in MPMI" number five: Does effector-triggered immunity (ETI) potentiate and restore pattern-triggered immunity (PTI)-or is there really a binary distinction between ETI and PTI? Since the previous International Congress of IS-MPMI in 2019, substantial progress has been made in untangling the complex signaling underlying plant immunity, including a greater understanding of the structure and function of key proteins. A clear need emerged for the MPMI community to come together virtually to share new knowledge around plant immunity. Over the course of two synchronous, half days of programming, participants from 32 countries attended two plenary sessions with engaging panel discussions and networked through interactive hours and poster breakout rooms. In this report, we summarize the concerted effort by multiple laboratories to study the molecular mechanisms underlying ETI and PTI, highlighting the essential role of plant resistosomes in the formation of calcium channels during an immune response. We conclude our report by forming new questions about how overlapping signaling mechanisms are controlled.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-08-21-0208-MR | DOI Listing |
Plant Cell Rep
January 2025
Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China.
Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission.
View Article and Find Full Text PDFFront Microbiol
January 2025
Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea.
Introduction: An effective vaccination policy must be implemented to prevent foot-and-mouth disease (FMD). However, the currently used vaccines for FMD have several limitations, including induction of humoral rather than cellular immune responses.
Methods: To overcome these shortcomings, we assessed the efficacy of levamisole, a small-molecule immunomodulator, as an adjuvant for the FMD vaccine.
Front Microbiol
January 2025
Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany.
Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Science, Jilin Agricultural University, Changchun, 13000, China.
Background: Thaumatin-like proteins (TLPs) are crucial pathogenesis-related proteins that significantly contribute to plant defense rection. Fusarium oxysporum f. sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!