Catalyst deep neural networks (Cat-DNNs) in singlet fission property prediction.

Phys Chem Chem Phys

School of Science and Engineering (SSE), Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen(CUHK-Shenzhen), 14-15F, Tower G2, Xinghe World, Rd Yabao, Longgang District, Shenzhen, Guangdong, 518172, China.

Published: September 2021

Many current deep neural network (DNN) models only focus on straightforward optimization over the given database. However, most numerical fitting procedures depart from physical laws. By introducing the concept of "catalysis" from physical chemistry, we propose that the physical correlations among molecular properties could spontaneously act as a catalyst in the DNNs, which increases the accuracy, and more importantly, guides the DNNs in the right way. These Catalysis-DNNs (Cat-DNNs) could precisely predict both the ground and excited-state properties, especially the molecules' screening with singlet fission character. We show that traditional machine learning metrics are not suitable for evaluating model accuracy in physical-chemical tasks and issue new physical errors. We believe that the agile transfer of fundamental physics or chemistry domain knowledge, like the catalyst, could significantly benefit both the architecture and application of artificial intelligence technology in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp03594kDOI Listing

Publication Analysis

Top Keywords

deep neural
8
singlet fission
8
catalyst deep
4
neural networks
4
networks cat-dnns
4
cat-dnns singlet
4
fission property
4
property prediction
4
prediction current
4
current deep
4

Similar Publications

[This retracts the article DOI: 10.1007/s00500-022-07122-8.].

View Article and Find Full Text PDF

Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors.

PLoS One

January 2025

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.

This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

View Article and Find Full Text PDF

Predicting transcriptional changes induced by molecules with MiTCP.

Brief Bioinform

November 2024

Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!