Gymnosperms are among the most endangered groups of plant species; they include ginkgo, pines (Conifers I), cupressophytes (Conifers II), cycads, and gnetophytes. The relationships among the five extant gymnosperm groups remain equivocal. We analyzed 167 available gymnosperm plastomes and investigated their diversity and phylogeny. We found that plastome size, structure, and gene order were highly variable in the five gymnosperm groups, of which Parasitaxus usta (Vieill.) de Laub. and Macrozamia mountperriensis F.M.Bailey had the smallest and largest plastomes, respectively. The inverted repeats (IRs) of the five groups were shown to have evolved through distinctive evolutionary scenarios. The IRs have been lost in all conifers but retained in cycads and gnetophytes. A positive association between simple sequence repeat (SSR) abundance and plastome size was observed, and the SSRs with the most variation were found in Pinaceae. Furthermore, the number of repeats was negatively correlated with IR length; thus, the highest number of repeats was detected in Conifers I and II, in which the IRs had been lost. We constructed a phylogeny based on 29 shared genes from 167 plastomes. With the plastome tree and 13 calibrations, we estimated the tree height between present-day angiosperms and gymnosperms to be ∼380 million years ago (mya). The placement of Gnetales in the tree agreed with the Gnetales-other gymnosperms hypothesis. The divergence between Ginkgo and cycads was estimated as ∼284 mya; the crown age of the cycads was 251 mya. Our time-calibrated plastid-based phylogenomic tree provides a framework for comparative studies of gymnosperm evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tpg2.20130 | DOI Listing |
Sci Rep
April 2024
Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
Abies koreana E.H.Wilson is an endangered evergreen coniferous tree that is native to high altitudes in South Korea and susceptible to the effects of climate change.
View Article and Find Full Text PDFGenes (Basel)
July 2023
Department of Biology, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
Mutations and subsequent repair processes are known to be strongly context-dependent in the flowering-plant chloroplast genome. At least six flanking bases, three on each side, can have an influence on the relative rates of different types of mutation at any given site. In this analysis, examine context and substitution at noncoding and fourfold degenerate coding sites in gymnosperm DNA.
View Article and Find Full Text PDFHortic Res
November 2022
Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
Chimeric plants composed of green and albino tissues have great ornamental value. To unveil the functional genes responsible for albino phenotypes in chimeric plants, we inspected the complete plastid genomes (plastomes) in green and albino leaf tissues from 23 ornamental chimeric plants belonging to 20 species, including monocots, dicots, and gymnosperms. In nine chimeric plants, plastomes were identical between green and albino tissues.
View Article and Find Full Text PDFFront Plant Sci
September 2022
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
Plastids are one of the main distinguishing characteristics of the plant cell. The plastid genome (plastome) of most autotrophic seed plants possesses a highly conserved quadripartite structure containing a large single-copy (LSC) and a small single-copy (SSC) region separated by two copies of the inverted repeat (termed as IR and IR). The IRs have been inferred to stabilize the plastid genome homologous recombination-induced repair mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
September 2022
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!