Stabilization of the Elusive Antimony(I) Cation and Its Coordination Complexes with Transition Metals.

Angew Chem Int Ed Engl

Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India.

Published: November 2021

Upon stabilization by 5,6-bis(diisopropylphosphino)acenaphthene to form compound 1, the fugitive antimony (I) cation exhibited nucleophilic behavior towards coinage metals. Compound 1 was strategically synthesized at room temperature from SbCl , the bis(phosphine), and trimethylsilyl trifluoromethanesulfonate taken in a 1:2:3 ratio, whereby the bis(phosphine) plays the dual role of a reductant and a supporting ligand. The generation of 1 involves two-electron oxidation of the ligand to form a P-P bonded diphosphonium dication. Compound 1 was separated from this dication to give both products in pure form in moderate yields. Despite the overall positive charge, the Sb site in 1 was found to bind to metal centers, forming complexes with Au , Ag and Cu . Compound 1 reduced Cu to Cu and formed a coordination complex with the resulting Cu species. The effects of the electron-rich bis(phosphine) and the constrained peri geometry in stabilizing and enhancing the nucleophilicity of 1 have been rationalized through computational studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202111339DOI Listing

Publication Analysis

Top Keywords

stabilization elusive
4
elusive antimonyi
4
antimonyi cation
4
cation coordination
4
coordination complexes
4
complexes transition
4
transition metals
4
metals stabilization
4
stabilization 56-bisdiisopropylphosphinoacenaphthene
4
56-bisdiisopropylphosphinoacenaphthene form
4

Similar Publications

RNA endonucleases are the rate-limiting initiator of decay for many bacterial mRNAs. However, the positions of cleavage and their sequence determinants remain elusive even for the well-studied Bacillus subtilis. Here we present two complementary approaches-transcriptome-wide mapping of endoribonucleolytic activity and deep mutational scanning of RNA cleavage sites-that reveal distinct rules governing the specificity among B.

View Article and Find Full Text PDF

G-quadruplex structures in 16S rRNA regions correlate with thermal adaptation in prokaryotes.

Nucleic Acids Res

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States.

G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation.

View Article and Find Full Text PDF

Research on water splitting is paramount for developing low-carbon alternative energy sources. Nevertheless, creating an efficient, cost-effective, and bifunctional electrocatalyst that facilitates both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) remains an elusive goal. In this work, we report a novel hybrid nanostructured electrocatalyst by combining and pyrolyzing MXene, MIL-53(Fe), and ZIF-67.

View Article and Find Full Text PDF

Hypothesis: Proximal humerus fractures present a treatment challenge due to varied fracture configurations and a lack of consensus on optimal management. Locking plate designs offer promising solutions, yet technical guidelines for successful outcomes remain elusive. Complications are common, with fixation-related failures often attributed to varus collapse.

View Article and Find Full Text PDF

The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!