Global climate change scenarios predict an increase in air temperature, precipitation and air humidity for northern latitudes. Elevated air humidity may significantly reduce the water flux through forest canopies and affect interactions between water and nutrient uptake. However, we have limited understanding of how altered transpiration would affect root respiration and carbon (C) exudation as fine root morphology acclimates to different water flux. We investigated the effects of elevated air relative humidity (eRH) and different inorganic nitrogen sources (NO3- and NH4+) on above and belowground traits in hybrid aspen (Populus × wettsteinii Hämet-Ahti), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) grown under controlled climate chamber conditions. The eRH significantly decreased the transpiration flux in all species, decreased root mass-specific exudation in pine, and increased root respiration in aspen. eRH also affected fine root morphology, with specific root area increasing for birch but decreasing in pine. The species comparison revealed that pine had the highest C exudation, whereas birch had the highest root respiration rate. Both humidity and nitrogen treatments affected the share of absorptive and pioneer roots within fine roots; however, the response was species-specific. The proportion of absorptive roots was highest in birch and aspen, the share of pioneer roots was greatest in aspen and the share of transport roots was greatest in pine. Fine roots with lower root tissue density were associated with pioneer root tips and had a higher C exudation rate. Our findings underline the importance of considering species-specific differences in relation to air humidity and soil nitrogen availability that interactively affect the C input-output balance. We highlight the role of changes in the fine root functional distribution as an important acclimation mechanism of trees in response to environmental change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpab118 | DOI Listing |
Plant Physiol Biochem
January 2025
College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:
Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA.
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition-amongst neighbors, relatives, or both-is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species' specialized chemistries in both roots and leaves.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Escuela de Ingeniería en Agronomía, Campus Tecnológico Local San Carlos, Tecnológico de Costa Rica, Alajuela 22321001, Costa Rica.
The role of a plant root system in resource acquisition is relevant to confront drought events caused by climate change. Accordingly, nursery practices like phosphorous (P) fertilization and root pruning have been shown to modify root architecture; however, their combined benefits require further investigation in Mediterranean species. We evaluated the effect of applied P concentrations (0, 15, 60, and 120 mg L P) with or without chemical (copper) root pruning (WCu, WoCu, respectively) in and on morpho-physiological and root architecture traits.
View Article and Find Full Text PDFInsects
January 2025
Program in Ecology and Environmental Science and Large River Studies Center, Department of Biology, Winona State University, Winona, MN 55987, USA.
Prior to implementing watershed-wide projects to reduce the impacts of agriculture on regional streams and rivers, stream habitats and benthic aquatic macroinvertebrate communities were assessed at 15 sites on the South Branch Root River and its major tributaries in southeastern Minnesota, USA. Triplicate kick-net samples were collected from each site during three time periods (1998, 1999, 2006/2008) and stream habitats were inventoried within 150 m long sections at each site. In total, 26,760 invertebrates representing 84 taxa were collected and used to rate stream sites using a regional multi-metric benthic index of biotic integrity (BIBI).
View Article and Find Full Text PDFPLoS One
January 2025
Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto City, Kyoto Prefecture, Japan.
Soil imaging in the field and laboratory has greatly advanced our understanding of plant root systems. Soil fungi function as important plant symbionts and decomposers of complex organic material in soil environments. For fungal hyphae, however, the application of soil imaging remains scarce, limiting our understanding of hyphal systems in soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!