We present two iridium complexes and that contain cationic ligands to extend the knowledge of charge-assisted hydrogen bonding (CAHB), which counts among the strongest non-covalent bonding interactions. Upon protonation, both complexes were converted into new hydrogen-bonding arrays with various selectivity for respective H-bonding partners. This study compares the association strengths of four hydrogen-bonding co-systems, emphasizing the roles of CAHB in supramolecular systems. We determined that the cationic charge in these systems contributed up to 2.7 kJ mol in the H-bonding complexation processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421767PMC
http://dx.doi.org/10.3389/fchem.2021.712698DOI Listing

Publication Analysis

Top Keywords

elucidation charge
4
charge contribution
4
contribution iridium-chelated
4
iridium-chelated hydrogen-bonding
4
hydrogen-bonding systems
4
systems iridium
4
iridium complexes
4
complexes cationic
4
cationic ligands
4
ligands extend
4

Similar Publications

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

A perspective on field-effect in energy and environmental catalysis.

Chem Sci

December 2024

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China

The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.

View Article and Find Full Text PDF

Lanthanides (Ln) are typically found in the +3 oxidation state. However, in recent decades, their chemistry has been expanded to include the less stable +2 oxidation state across the entire series except promethium (Pm), facilitated by the coordination of ligands such as trimethylsilylcyclopentadienyl, CHSiMe (Cp'). The complexes have been the workhorse for the synthesis and theoretical study of the fundamental aspects of divalent lanthanide chemistry, where experimental and computational evidence have suggested the existence of different ground state (GS) configurations, 4f or 4f 5d, depending on the specific metal.

View Article and Find Full Text PDF

CENPE is a diagnostic and prognostic biomarker for cervical cancer.

Heliyon

December 2024

Department of Medical Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Chaoyang District, Changchun, 130021, China.

Cervical squamous cell carcinoma (CESC) is a common cancer in women. Despite advancements in early diagnosis through high-risk human papillomavirus (HPV) screening, challenges remain in predicting and treating the disease. Hence, the identification of novel biomarkers for prognosis and therapeutic targets is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!