Discovering novel multifunctional metamaterials with energy harvesting and sensing functionalities is likely to be the next technological evolution of the metamaterial science. Here, we introduce a novel concept called self-aware composite mechanical metamaterial (SCMM) that can transform mechanical metamaterials into nanogenerators and active sensing mediums. In pursuit of this goal, we examine new paradigms where finely tailored and seamlessly integrated self-recovering snapping microstructures composed of topologically different triboelectric materials can form self-powering and self-sensing meta-tribomaterial systems. We explore various deformation mechanisms required to induce contact electrification between these snapping microstructures under periodic deformations. The multifunctional meta-tribomaterial systems created under the SCMM concept will act as triboelectric nanogenerators capable of generating electrical signals in response to the applied mechanical excitations. The generated electrical signal can be used for active sensing of the applied force and can be stored for empowering sensors and embedded electronics. We conduct theoretical and experimental studies to understand the mechanical and electrical behavior of the multifunctional SCMM systems. The broad application of the proposed SCMM concept for designing artificial materials with novel properties and functionalities is highlighted via prototyping self-powering and self-sensing blood vessel stents and shock absorbers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423374PMC
http://dx.doi.org/10.1016/j.nanoen.2021.106074DOI Listing

Publication Analysis

Top Keywords

active sensing
12
multifunctional meta-tribomaterial
8
energy harvesting
8
snapping microstructures
8
self-powering self-sensing
8
meta-tribomaterial systems
8
scmm concept
8
multifunctional
4
meta-tribomaterial nanogenerators
4
nanogenerators energy
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Micro/nanoscale 3D bioelectrodes gain increasing interest for electrophysiological recording of electroactive cells. Although 3D printing has shown promise to flexibly fabricate 3D bioelectronics compared with conventional microfabrication, relatively-low resolution limits the printed bioelectrode for high-quality signal monitoring. Here, a novel multi-material electrohydrodynamic printing (EHDP) strategy is proposed to fabricate bioelectronics with sub-microscale 3D gold pillars for in vitro electrophysiological recordings.

View Article and Find Full Text PDF

Background: Subacromial impingement syndrome (SIS) is a common cause of shoulder pain and dysfunction. Modified posterior shoulder stretching exercises have been proposed as a treatment method aimed at improving shoulder function and reducing pain in patients with SIS. However, the efficacy of these exercises remains controversial, necessitating a systematic meta-analysis to comprehensively evaluate their effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!