A combined experimental-computational approach has been used to study the cyclopropanation reaction of -hydroxyphthalimide diazoacetate (NHPI-DA) with various olefins, catalyzed by a ruthenium-phenyloxazoline (Ru-Pheox) complex. Kinetic studies show that the better selectivity of the employed redox-active NHPI diazoacetate is a result of a much slower dimerization reaction compared to aliphatic diazoacetates. Density functional theory calculations reveal that several reactions can take place with similar energy barriers, namely, dimerization of the NHPI diazoacetate, cyclopropanation (inner-sphere and outer-sphere), and a previously unrecognized migratory insertion of the carbene into the phenyloxazoline ligand. The calculations show that the migratory insertion reaction yields an unconsidered ruthenium complex that is catalytically competent for both the dimerization and cyclopropanation, and its relevance is assessed experimentally. The stereoselectivity of the reaction is argued to stem from an intricate balance between the various mechanistic scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419840PMC
http://dx.doi.org/10.1021/acscatal.1c02540DOI Listing

Publication Analysis

Top Keywords

nhpi diazoacetate
8
migratory insertion
8
combined experimental
4
experimental computational
4
computational study
4
study ruthenium
4
ruthenium -hydroxyphthalimidoyl
4
-hydroxyphthalimidoyl carbenes
4
carbenes alkene
4
cyclopropanation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!